login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Hankel transform of ordered Bell numbers A000670. a(n)=det(A000670(i+j-1)), i,j=1,2..n.
1

%I #12 Mar 30 2016 04:27:45

%S 1,4,192,221184,10192158720,28179280429056000,

%T 6544446260541338419200000,170229151878929266676890337280000000,

%U 637613431509979741286846928045094207488000000000

%N Hankel transform of ordered Bell numbers A000670. a(n)=det(A000670(i+j-1)), i,j=1,2..n.

%H Todd Silvestri, <a href="/A159783/b159783.txt">Table of n, a(n) for n = 1..30</a>

%F a(n) = 2^((n-1)*n/2)*G(n+1)*G(n+2)=2^((n-1)*n/2)*A000178(n-1)*A000178(n), where G(n)=product(Gamma(k), k=1..n). - _Todd Silvestri_, Nov 15 2014

%F a(n) ~ 2^((n^2 + n + 1)/2) * n^(n^2 + n + 1/3) * Pi^(n + 1/2) / (A^2 * exp(3*n^2/2 + n - 1/6)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Jul 10 2015

%t a[n_Integer/;n>=1]:=2^((n-1) n/2) BarnesG[n+1] BarnesG[n+2] (* _Todd Silvestri_, Nov 15 2014 *)

%t a[n_] := Table[HurwitzLerchPhi[1/2, 1-i-j, 0]/2, {i, n}, {j, n}] // Det;

%t Array[a, 10] (* _Jean-François Alcover_, Mar 30 2016 *)

%K nonn

%O 1,2

%A _Karol A. Penson_, Apr 22 2009