login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203510
a(n) = A203482(n) / A000178(n).
3
1, 3, 84, 273000, 3046699656000, 5996663814749677445376000, 160771799453017261771769947549079938007040000, 6351968589735888467306807912855132014808202373395298410963148996608000000
OFFSET
1,2
COMMENTS
It is conjectured that every term of the sequence is an integer.
LINKS
FORMULA
a(n) ~ c * A * n^(n^3/3 - n^2/4 - 7*n/12 + 17/24) * (2*Pi)^(n^2/4 - 3*n/4) / exp(4*n^3/9 - 7*n^2/8 - n + 1/12), where A is the Glaisher-Kinkelin constant A074962 and c = 0.488888619502150098591650327163991582267254151817880403495924251381414248582... (from A203482). - Vaclav Kotesovec, Nov 20 2023
MATHEMATICA
f[j_] := j!; z = 10;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203482 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203483 *)
Table[v[n]/d[n], {n, 1, 10}] (* this sequence *)
Table[Product[j! + k!, {j, 1, n}, {k, 1, j-1}] / BarnesG[n+1], {n, 1, 10}] (* Vaclav Kotesovec, Nov 20 2023 *)
PROG
(Magma)
BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;
A203510:= func< n | n eq 1 select 1 else (&*[(&*[Factorial(j) + Factorial(k): k in [1..j-1]]): j in [2..n]])/BarnesG(n+1) >;
[A203510(n): n in [1..13]]; // G. C. Greubel, Feb 24 2024
(SageMath)
def BarnesG(n): return product(factorial(j) for j in range(1, n-1))
def A203510(n): return product(product(factorial(j)+factorial(k) for k in range(1, j)) for j in range(1, n+1))/BarnesG(n+1)
[A203510(n) for n in range(1, 14)] # G. C. Greubel, Feb 24 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 03 2012
STATUS
approved