The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A203483 a(n) = v(n+1)/v(n), where v = A203482. 4
 3, 56, 19500, 267841728, 236189890379520, 19303349192505048268800, 199126474924007956512865886208000, 339543987407937097660189431863908761600000000, 121553118121801544803671246298148699436481551316864204800000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS G. C. Greubel, Table of n, a(n) for n = 1..29 FORMULA a(n) = Product_{k=1..n} (k! + (n+1)!). - G. C. Greubel, Aug 29 2023 From Vaclav Kotesovec, Nov 20 2023: (Start) a(n) ~ (n+1)!^n. a(n) ~ (2*Pi)^(n/2) * n^(n^2 + 3*n/2) / exp(n^2 - 13/12). (End) MATHEMATICA (* First program *) f[j_]:= j!; z = 10; v[n_]:= Product[Product[f[k] + f[j], {j, k-1}], {k, 2, n}] d[n_]:= Product[(i-1)!, {i, n}] (* A000178 *) Table[v[n], {n, z}] (* A203482 *) Table[v[n+1]/v[n], {n, z-1}] (* this sequence *) Table[v[n]/d[n], {n, 10}] (* A203510 *) (* Second program *) Table[Product[k!+(n+1)!, {k, n}], {n, 15}] (* G. C. Greubel, Aug 29 2023 *) PROG (Magma) [(&*[Factorial(k) + Factorial(n+1): k in [1..n]]): n in [1..16]]; // G. C. Greubel, Aug 29 2023 (SageMath) [product(factorial(k) + factorial(n+1) for k in range(1, n+1)) for n in range(1, 16)] # G. C. Greubel, Aug 29 2023 CROSSREFS Cf. A000142, A093883, A203482, A203510, A323717. Sequence in context: A132489 A350336 A344690 * A051227 A122548 A078728 Adjacent sequences: A203480 A203481 A203482 * A203484 A203485 A203486 KEYWORD nonn AUTHOR Clark Kimberling, Jan 03 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 19:28 EDT 2024. Contains 373690 sequences. (Running on oeis4.)