login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A203482(n) / A000178(n).
3

%I #24 Feb 24 2024 22:04:34

%S 1,3,84,273000,3046699656000,5996663814749677445376000,

%T 160771799453017261771769947549079938007040000,

%U 6351968589735888467306807912855132014808202373395298410963148996608000000

%N a(n) = A203482(n) / A000178(n).

%C It is conjectured that every term of the sequence is an integer.

%H G. C. Greubel, <a href="/A203510/b203510.txt">Table of n, a(n) for n = 1..16</a>

%F a(n) ~ c * A * n^(n^3/3 - n^2/4 - 7*n/12 + 17/24) * (2*Pi)^(n^2/4 - 3*n/4) / exp(4*n^3/9 - 7*n^2/8 - n + 1/12), where A is the Glaisher-Kinkelin constant A074962 and c = 0.488888619502150098591650327163991582267254151817880403495924251381414248582... (from A203482). - _Vaclav Kotesovec_, Nov 20 2023

%t f[j_] := j!; z = 10;

%t v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]

%t d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)

%t Table[v[n], {n, 1, z}] (* A203482 *)

%t Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203483 *)

%t Table[v[n]/d[n], {n, 1, 10}] (* this sequence *)

%t Table[Product[j! + k!, {j, 1, n}, {k, 1, j-1}] / BarnesG[n+1], {n, 1, 10}] (* _Vaclav Kotesovec_, Nov 20 2023 *)

%o (Magma)

%o BarnesG:= func< n | (&*[Factorial(k): k in [0..n-2]]) >;

%o A203510:= func< n | n eq 1 select 1 else (&*[(&*[Factorial(j) + Factorial(k): k in [1..j-1]]): j in [2..n]])/BarnesG(n+1) >;

%o [A203510(n): n in [1..13]]; // _G. C. Greubel_, Feb 24 2024

%o (SageMath)

%o def BarnesG(n): return product(factorial(j) for j in range(1,n-1))

%o def A203510(n): return product(product(factorial(j)+factorial(k) for k in range(1,j)) for j in range(1,n+1))/BarnesG(n+1)

%o [A203510(n) for n in range(1,14)] # _G. C. Greubel_, Feb 24 2024

%Y Cf. A000142, A000178, A074962, A093883, A203482, A203483.

%K nonn

%O 1,2

%A _Clark Kimberling_, Jan 03 2012