login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A203511(n+1)/A203511(n).
2

%I #17 Feb 23 2024 02:31:05

%S 1,4,63,2288,151200,15909696,2447297356,518678754048,145022370451200,

%T 51747613910720000,22956761806169786496,12397159038346976323584,

%U 8008689946841913447559168,6099405371286264105062400000,5408896545253926024119820000000

%N a(n) = A203511(n+1)/A203511(n).

%H G. C. Greubel, <a href="/A203512/b203512.txt">Table of n, a(n) for n = 0..220</a>

%F a(n) ~ 2 * n^(2*n) / exp((2 - Pi/2)*n - 3*Pi/4). - _Vaclav Kotesovec_, Sep 07 2023

%t f[j_] := j (j + 1)/2; z = 15;

%t v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]

%t Table[v[n], {n, 1, z}] (* A203511 *)

%t Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203512 *)

%t Table[Product[(n+2)*(n+1)/2 + j*(j+1)/2, {j, 1, n}], {n, 0, 10}] (* _Vaclav Kotesovec_, Sep 07 2023 *)

%o (Magma) [1] cat [(&*[(n+1)*(n+2) +j*(j+1): j in [1..n]])/2^n: n in [1..30]]; // _G. C. Greubel_, Feb 23 2024

%o (SageMath)

%o def A203512(n): return product((n+1)*(n+2)+j*(j+1) for j in range(1, n+1))//2^n

%o [A203512(n) for n in range(31)] # _G. C. Greubel_, Feb 23 2024

%Y Cf. A000217, A093883, A203511.

%K nonn

%O 0,2

%A _Clark Kimberling_, Jan 03 2012

%E More terms from _Alois P. Heinz_, Jul 29 2017