login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377383
Numbers k in A020487 with arithmetic derivative k' (A003415) in A020487.
0
4, 256, 500, 625, 2500, 4225, 11664, 12800, 14580, 81920, 250000, 262144, 364500, 531441, 800000, 2125764, 4734976, 11943936, 27541504, 64000000, 84050000, 107868672, 156250000, 162542848, 195312500, 253472000, 512635136, 544195584, 607642880, 701146368, 770786560
OFFSET
1,1
COMMENTS
Numbers of the form m = 2^(2^(2*k - 1)) are terms. Indeed, m is a square, so it is a term in A020487, and m' = 2^(2*k - 1)*2^(2^(2*k - 1) - 1) = 2^(2^( 2*k - 1) +2*k- 2) is also a square, so it is in A020487.
EXAMPLE
4' = 4 = A020487(2), so 4 is a term.
256 = A020487(22), 256' = 1024 = A020487(48), so 256 is a term.
MATHEMATICA
ad[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); ahQ[n_] := Divisible[DivisorSigma[2, n], DivisorSigma[1, n]]; Select[Range[2, 10^6], ahQ[#] && ahQ[ad[#]] &] (* Amiram Eldar, Dec 11 2024 *)
PROG
(Magma) f:=func<n |n le 1 select 0 else n*(&+[Factorisation(n)[i][2] / Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; ant:=func<n|IsZero(DivisorSigma(2, n) mod DivisorSigma(1, n))>; [n:n in [2..100000]|ant(n) and ant(Floor(f(n)))];
CROSSREFS
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Dec 05 2024
STATUS
approved