login
A377385
Factorial-base Niven numbers (A118363) k such that k/f(k) is also a factorial-base Niven number, where f(k) = A034968(k) is the sum of digits in the factorial-base representation of k.
6
1, 2, 4, 6, 8, 12, 16, 18, 24, 27, 36, 40, 48, 54, 72, 80, 96, 108, 120, 135, 144, 168, 175, 180, 192, 208, 210, 240, 280, 288, 336, 360, 384, 420, 432, 468, 480, 490, 572, 576, 594, 600, 630, 720, 732, 740, 750, 780, 784, 819, 840, 846, 861, 864, 888, 900, 924, 936, 945, 980, 984
OFFSET
1,2
LINKS
EXAMPLE
8 is a term since 8/f(8) = 4 is an integer and also 4/f(4) = 2 is an integer.
MATHEMATICA
fdigsum[n_] := Module[{k = n, m = 2, r, s = 0}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, s += r; m++]; s]; q[k_] := Module[{f = fdigsum[k]}, Divisible[k, f] && Divisible[k/f, fdigsum[k/f]]]; Select[Range[1000], q]
PROG
(PARI) fdigsum(n) = {my(k = n, m = 2, r, s = 0); while([k, r] = divrem(k, m); k != 0 || r != 0, s += r; m++); s; }
is(k) = {my(f = fdigsum(k)); !(k % f) && !((k/f) % fdigsum(k/f)); }
CROSSREFS
Subsequence of A118363.
Subsequences: A000142, A377386.
Analogous sequences: A376616 (binary), A377209 (Zeckendorf).
Sequence in context: A060765 A140110 A128397 * A120383 A324842 A055932
KEYWORD
nonn,easy,base
AUTHOR
Amiram Eldar, Oct 27 2024
STATUS
approved