login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060765
Numbers n such that every difference between consecutive divisors (ordered by increasing magnitude) of n is also a divisor of n.
5
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 42, 48, 54, 60, 64, 72, 96, 100, 108, 120, 128, 144, 156, 162, 168, 180, 192, 216, 240, 256, 272, 288, 294, 300, 324, 342, 360, 384, 432, 480, 486, 500, 504, 512, 576, 600, 648, 720, 768, 840, 900, 960, 972, 1008, 1024
OFFSET
1,2
COMMENTS
Equivalently, A060763(n)=0.
Powers of 2 and factorials up to 7! are here.
For each k=1..A000005(a(n))-1 exists k' < A000005(a(n)) such that A193829(a(n),k) = A027750(a(n),k'). - Reinhard Zumkeller, Jun 25 2015
From Robert Israel, Jul 03 2017: (Start)
Also includes 3*2^k and 2*3^k for all k>= 1.
All terms except 1 are even. (End)
Conjecture: a(n) has the property that for each prime divisor p, p-1|a(n)/p. If this conjecture is true then terms can be searched by distinct prime divisors. - David A. Corneth, Jul 06 2017
The divisors of a(n) form a Brauer chain. See A079301 for the definition of a Brauer chain. - Zizheng Fang, Jan 30 2020
LINKS
EXAMPLE
For n = 12, divisors={1, 2, 3, 4, 6, 12}; differences={1, 1, 1, 2, 6}; every difference is a divisor, so 12 is in the sequence.
MAPLE
f:= proc(n) local D, L;
D:= numtheory:-divisors(n);
L:= sort(convert(D, list));
nops(convert(L[2..-1]-L[1..-2], set) minus D);
end proc:
select(f=0, [$1..1000]); # Robert Israel, Jul 03 2017
MATHEMATICA
test[n_ ] := Length[Complement[Drop[d=Divisors[n], 1]-Drop[d, -1], d]]==0; Select[Range[1, 1024], test]
(* Second program: *)
Select[Range[2^10], Function[n, AllTrue[Differences@ Divisors@ n, Divisible[n, #] &]]] (* Michael De Vlieger, Jul 12 2017 *)
PROG
(Haskell)
import Data.List (sort, nub); import Data.List.Ordered (subset)
a060765 n = a060765_list !! (n-1)
a060765_list = filter
(\x -> sort (nub $ a193829_row x) `subset` a027750_row' x) [1..]
-- Reinhard Zumkeller, Jun 25 2015
(PARI) isok(n)=my(d=divisors(n), v=vecsort(vector(#d-1, k, d[k+1]-d[k]), , 8)); #select(x->setsearch(d, x), v) == #v; \\ Michel Marcus, Jul 06 2017
(PARI) is(n)=my(t); fordiv(n, d, if(n%(d-t), return(0)); t=d); 1 \\ Charles R Greathouse IV, Jul 12 2017
(Magma) [k:k in [1..1025]| forall{i:i in [2..#Divisors(k)]|k mod (d[i]-d[i-1]) eq 0 where d is Divisors(k)}]; // Marius A. Burtea, Jan 30 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 24 2001
EXTENSIONS
Edited by Dean Hickerson, Jan 22 2002
STATUS
approved