login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377382
a(n) is the smallest number k for which exactly n of its divisors are interprime numbers (A024675).
0
1, 4, 52, 12, 162, 36, 60, 120, 240, 300, 180, 600, 360, 1560, 720, 1260, 1440, 1620, 2520, 2880, 3240, 5040, 10920, 6300, 9360, 10080, 12960, 12600, 15840, 20160, 22680, 25200, 31680, 39600, 27720, 59400, 50400, 70560, 56700, 79200, 55440, 65520, 83160, 100800
OFFSET
0,2
EXAMPLE
Because A024675(1) = 4 it follows that a(0) = 1 and a(1) = 4.
a(2) = 52 because 52 has the divisors 4 = A024675(1), 26 = A024675(8) and no number from 1 to 51 has exactly two interprime divisors.
MATHEMATICA
d[n_] := DivisorSum[n, 1 &, CompositeQ[#] && NextPrime[#] + NextPrime[#, -1] == 2*# &]; seq[len_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len, i = d[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[44] (* Amiram Eldar, Dec 11 2024 *)
PROG
(Magma) ipr:=func<n|n ge 3 and not IsPrime(n) and 2*n eq NextPrime(n)+PreviousPrime(n)>; a:=[]; for n in [0..43] do k:=1; while #[d:d in Divisors(k)|ipr(d)] ne n do k:=k+1; end while; Append(~a, k); end for; a;
CROSSREFS
Sequence in context: A000516 A182044 A000854 * A232517 A329009 A110908
KEYWORD
nonn,new
AUTHOR
Marius A. Burtea, Dec 05 2024
STATUS
approved