login
A182044
The number of black and white n X n grids distinct under reflections, rotations, and flipping color.
7
1, 4, 51, 4324, 2105872, 4295327872, 35184441295872, 1152921514807410688, 151115727460762179076096, 79228162514269263405644775424, 166153499473114502703835144588886016, 1393796574908163946385532211334573052657664
OFFSET
1,2
COMMENTS
a(n) is the number of n X n grids, with each cell painted black or white, distinct under horizontal, vertical, and diagonal reflections, all 3 rotations, and flipping color (changing all white cells to black, and black to white).
Thanks to Benoit Jubin and Graeme McRae for applying Burnside's Lemma appropriately.
LINKS
FORMULA
a(2n) = (6*2^(2*n^2) + 4*2^(n^2) + 2*2^(n*(2*n+1)) + 2^(4*n^2)) / 16,
a(2n+1) = (2^((2*n+1)^2) + 2*2^(1+n*(n+1)) + 2*2^((n+1)*(2*n+1)) + 2^(n*(2*n+2)+1) + 2*2^((2*n+1)*(n+1))) / 16.
EXAMPLE
For n = 2 the a(2) = 4 grids are:
ww wb wb ww
ww ww bw bb
MAPLE
f:= n -> if n::even then (3/8)*2^((1/2)*n^2)+(1/4)*2^((1/4)*n^2)+(1/8)*2^((1/2)*n*(n+1))+(1/16)*2^(n^2)
else (1/16)*2^(n^2)+(1/8)*2^(3/4+(1/4)*n^2)+(1/4)*2^((1/2)*n*(n+1))+(1/16)*2^((1/2)*n^2+1/2)
fi;
map(f, [$1..16]); # Robert Israel, Jul 12 2015
MATHEMATICA
a[n_] := If[EvenQ[n], (3*2^(n^2/2))/8 + 2^(n^2/4)/4 + 2^n^2/16 + (1/8)* 2^((1/2)*n*(n+1)), 2^n^2/16 + (1/8)*2^((1/4)*(n^2+3)) + (1/16)*2^((1/2)* (n^2+1)) + (1/4)*2^((1/2)*n*(n+1))];
Array[a, 16] (* Jean-François Alcover, Apr 10 2019, from Maple *)
CROSSREFS
Cf. A357536.
Sequence in context: A287231 A289708 A000516 * A000854 A232517 A329009
KEYWORD
nonn
AUTHOR
Isaac E. Lambert, Apr 08 2012
STATUS
approved