login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182042
Triangle T(n,k), read by rows, given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, 0, -3/2, 3/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
1
1, 0, 3, 0, 6, 9, 0, 9, 27, 27, 0, 12, 54, 108, 81, 0, 15, 90, 270, 405, 243, 0, 18, 135, 540, 1215, 1458, 729, 0, 21, 189, 945, 2835, 5103, 5103, 2187, 0, 24, 252, 1512, 5670, 13608, 20412, 17496, 6561, 0, 27, 324, 2268, 10206, 30618, 61236, 78732, 59049, 19683
OFFSET
0,3
COMMENTS
Row sums are 4^n - 1 + 0^n.
Triangle of coefficients in expansion of (1+3*x)^n - 1 + 0^n.
FORMULA
T(n,0) = 0^n; T(n,k) = binomial(n,k)*3^k for k > 0.
G.f.: (1-2*x+x^2+3*y*x^2)/(1-2*x-3*y*x+x^2+3*y*x^2).
T(n,k) = 2*T(n-1,k) + 3*T(n-1,k-1) - T(n-2,k) -3*T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 3, T(2,1) = 6, T(2,2) = 9 and T(n,k) = 0 if k < 0 or if k > n.
T(n,k) = A206735(n,k)*3^k.
T(n,k) = A013610(n,k) - A073424(n,k).
EXAMPLE
Triangle begins:
1;
0, 3;
0, 6, 9;
0, 9, 27, 27;
0, 12, 54, 108, 81;
0, 15, 90, 270, 405, 243;
0, 18, 135, 540, 1215, 1458, 729;
0, 21, 189, 945, 2835, 5103, 5103, 2187;
MAPLE
T:= proc(n, k) option remember;
if k=n then 3^n
elif k=0 then 0
else binomial(n, k)*3^k
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 17 2020
MATHEMATICA
With[{m = 9}, CoefficientList[CoefficientList[Series[(1-2*x+x^2+3*y*x^2)/(1-2*x-3*y*x+x^2+3*y*x^2), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
PROG
(PARI) T(n, k) = if (k==0, 1, binomial(n, k)*3^k);
matrix(10, 10, n, k, T(n-1, k-1)) \\ to see the triangle \\ Michel Marcus, Feb 17 2020
(Sage)
@CachedFunction
def T(n, k):
if (k==n): return 3^n
elif (k==0): return 0
else: return binomial(n, k)*3^k
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 17 2020
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Apr 07 2012
EXTENSIONS
a(48) corrected by Georg Fischer, Feb 17 2020
STATUS
approved