login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073424
Triangle read by rows: T(m,n) = parity of 0^n + 0^m, n = 0,1,2,3 ..., m = 0,1,2,3, ... n.
9
0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,1
COMMENTS
Parity of the sums of two powers of any even number.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150).
Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
FORMULA
a(n) = parity [ (2k)^n + (2k)^m, n = 0, 1, 2, 3 ..., m = 0, 1, 2, 3, ... n ]
T(n,0) = 1- 0^n, T(n,k) = 0 for k>0. - Philippe Deléham, Feb 11 2012
G.f.: Theta_2(0,sqrt(x))/(2*x^(1/8))-1, where Theta_2 is a Jacobi theta function. - Robert Israel, Mar 01 2016
For n>0, a(n) = 1 if and only if n is in A000217. - Chai Wah Wu, Nov 09 2024
EXAMPLE
a(3) = 1 because (2k)^2 + (2k)^0 = 4k^2 + 1 is odd.
Triangle begins :
0
1, 0
1, 0, 0
1, 0, 0, 0
1, 0, 0, 0, 0
1, 0, 0, 0, 0, 0
1, 0, 0, 0, 0, 0, 0
1, 0, 0, 0, 0, 0, 0, 0
1, 0, 0, 0, 0, 0, 0, 0, 0
1, 0, 0, 0, 0, 0, 0, 0, 0, 0 - Philippe Deléham, Feb 11 2012
MAPLE
0, seq(op([1, 0$n]), n=1..20); # Robert Israel, Mar 01 2016
MATHEMATICA
Array[If[# == 1, {0}, PadRight[{1}, #]] &, 14] // Flatten (* or *)
Unprotect[Power]; Power[0, 0] = 1; Protect[Power]; Table[0^m + 0^n - 2 Boole[m == n == 0], {n, 0, 14}, {m, 0, n}] // Flatten (* Michael De Vlieger, Aug 22 2018 *)
PROG
(Python)
from math import isqrt
def A073424(n): return int((k:=n<<1)==(m:=isqrt(k))*(m+1)) if n else 0 # Chai Wah Wu, Nov 09 2024
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Jeremy Gardiner, Jul 30 2002
STATUS
approved