The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073424 Triangle read by rows: T(m,n) = parity of 0^n + 0^m, n = 0,1,2,3 ..., m = 0,1,2,3, ... n. 9
 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Parity of the sums of two powers of any even number. LINKS Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150). Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018. FORMULA a(n) = parity [ (2k)^n + (2k)^m, n = 0, 1, 2, 3 ..., m = 0, 1, 2, 3, ... n ] T(n,0) = 1- 0^n, T(n,k) = 0 for k>0. - Philippe Deléham, Feb 11 2012 G.f.: Theta_2(0,sqrt(x))/(2*x^(1/8))-1, where Theta_2 is a Jacobi theta function. - Robert Israel, Mar 01 2016 EXAMPLE a(3) = 1 because (2k)^2 + (2k)^0 = 4k^2 + 1 is odd. Triangle begins : 0 1, 0 1, 0, 0 1, 0, 0, 0 1, 0, 0, 0, 0 1, 0, 0, 0, 0, 0 1, 0, 0, 0, 0, 0, 0 1, 0, 0, 0, 0, 0, 0, 0 1, 0, 0, 0, 0, 0, 0, 0, 0 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 - Philippe Deléham, Feb 11 2012 MAPLE 0, seq(op([1, 0\$n]), n=1..20); # Robert Israel, Mar 01 2016 MATHEMATICA Array[If[# == 1, {0}, PadRight[{1}, #]] &, 14] // Flatten (* or *) Unprotect[Power]; Power[0, 0] = 1; Protect[Power]; Table[0^m + 0^n - 2 Boole[m == n == 0], {n, 0, 14}, {m, 0, n}] // Flatten (* Michael De Vlieger, Aug 22 2018 *) CROSSREFS Cf. A023531, A010054, A073423. Sequence in context: A352824 A101309 A141474 * A135993 A334414 A285966 Adjacent sequences: A073421 A073422 A073423 * A073425 A073426 A073427 KEYWORD easy,nonn,tabl AUTHOR Jeremy Gardiner, Jul 30 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 5 09:09 EST 2024. Contains 370545 sequences. (Running on oeis4.)