login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073424 Triangle read by rows: T(m,n) = parity of 0^n + 0^m, n = 0,1,2,3 ..., m = 0,1,2,3, ... n. 9
0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Parity of the sums of two powers of any even number.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150).
Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
FORMULA
a(n) = parity [ (2k)^n + (2k)^m, n = 0, 1, 2, 3 ..., m = 0, 1, 2, 3, ... n ]
T(n,0) = 1- 0^n, T(n,k) = 0 for k>0. - Philippe Deléham, Feb 11 2012
G.f.: Theta_2(0,sqrt(x))/(2*x^(1/8))-1, where Theta_2 is a Jacobi theta function. - Robert Israel, Mar 01 2016
EXAMPLE
a(3) = 1 because (2k)^2 + (2k)^0 = 4k^2 + 1 is odd.
Triangle begins :
0
1, 0
1, 0, 0
1, 0, 0, 0
1, 0, 0, 0, 0
1, 0, 0, 0, 0, 0
1, 0, 0, 0, 0, 0, 0
1, 0, 0, 0, 0, 0, 0, 0
1, 0, 0, 0, 0, 0, 0, 0, 0
1, 0, 0, 0, 0, 0, 0, 0, 0, 0 - Philippe Deléham, Feb 11 2012
MAPLE
0, seq(op([1, 0$n]), n=1..20); # Robert Israel, Mar 01 2016
MATHEMATICA
Array[If[# == 1, {0}, PadRight[{1}, #]] &, 14] // Flatten (* or *)
Unprotect[Power]; Power[0, 0] = 1; Protect[Power]; Table[0^m + 0^n - 2 Boole[m == n == 0], {n, 0, 14}, {m, 0, n}] // Flatten (* Michael De Vlieger, Aug 22 2018 *)
CROSSREFS
Sequence in context: A352824 A101309 A141474 * A135993 A334414 A285966
KEYWORD
easy,nonn,tabl
AUTHOR
Jeremy Gardiner, Jul 30 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 5 09:09 EST 2024. Contains 370545 sequences. (Running on oeis4.)