login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101309
Matrix logarithm of A047999 (Pascal's triangle mod 2).
1
0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0
OFFSET
0,1
COMMENTS
Row sums equal A000120 (binary 1's-counting sequence). Antidiagonal sums form A101979.
FORMULA
T(n, k)=1 when n XOR k = 2^m for integer m>=0, T(n, k)=0 elsewhere.
EXAMPLE
T(n,k)=1 when n XOR k is a power of 2:
T(3,2)=1 since 3 XOR 2 = 2^0, T(4,0)=1 since 4 XOR 0 = 2^2,
T(5,1)=1 since 5 XOR 1 = 2^2, T(6,4)=1 since 6 XOR 4 = 2^2.
Rows begin:
[0],
[1, 0],
[1,0, 0],
[0,1, 1,0],
[1,0,0,0, 0],
[0,1,0,0, 1,0],
[0,0,1,0, 1,0,0],
[0,0,0,1, 0,1,1,0],...
PROG
(PARI) T(n, k)=if(n>k&bitxor(n, k)==2^valuation(bitxor(n, k), 2), 1, 0)
CROSSREFS
Sequence in context: A127266 A083923 A352824 * A141474 A073424 A135993
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 23 2004
STATUS
approved