login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127266
Expansion of 1/Pi in base 2.
2
0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0
OFFSET
0
LINKS
Sanjar M. Abrarov, Rehan Siddiqui, Rajinder K. Jagpal, and Brendan M. Quine, A rational approximation of the two-term Machin-like Formula for Pi, Preprints 2024, 2024060554.
FORMULA
a(n) = A024810(n) mod 2. - Sanjar Abrarov, Jun 18 2024
EXAMPLE
0.0101000101111100110000011011...
MATHEMATICA
Join[{0}, RealDigits[1/Pi, 2, 120][[1]]] (* Harvey P. Dale, Mar 05 2016 *)
CROSSREFS
Cf. A024810.
Cf. A004601 (binary expansion of Pi), A049541 (1/Pi in decimal), A346218 (1/Pi in signed binary non-adjacent form).
Sequence in context: A284851 A289741 A185276 * A083923 A352824 A101309
KEYWORD
base,easy,nonn
AUTHOR
Thomas Klemm (thomas.klemm(AT)adnouvm.ch), Mar 27 2007
EXTENSIONS
Corrected by Harvey P. Dale, Mar 05 2016
STATUS
approved