Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Feb 17 2020 21:20:01
%S 1,0,3,0,6,9,0,9,27,27,0,12,54,108,81,0,15,90,270,405,243,0,18,135,
%T 540,1215,1458,729,0,21,189,945,2835,5103,5103,2187,0,24,252,1512,
%U 5670,13608,20412,17496,6561,0,27,324,2268,10206,30618,61236,78732,59049,19683
%N Triangle T(n,k), read by rows, given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, 0, -3/2, 3/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
%C Row sums are 4^n - 1 + 0^n.
%C Triangle of coefficients in expansion of (1+3*x)^n - 1 + 0^n.
%H G. C. Greubel, <a href="/A182042/b182042.txt">Rows n = 0..100 of triangle, flattened</a>
%F T(n,0) = 0^n; T(n,k) = binomial(n,k)*3^k for k > 0.
%F G.f.: (1-2*x+x^2+3*y*x^2)/(1-2*x-3*y*x+x^2+3*y*x^2).
%F T(n,k) = 2*T(n-1,k) + 3*T(n-1,k-1) - T(n-2,k) -3*T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 3, T(2,1) = 6, T(2,2) = 9 and T(n,k) = 0 if k < 0 or if k > n.
%F T(n,k) = A206735(n,k)*3^k.
%F T(n,k) = A013610(n,k) - A073424(n,k).
%e Triangle begins:
%e 1;
%e 0, 3;
%e 0, 6, 9;
%e 0, 9, 27, 27;
%e 0, 12, 54, 108, 81;
%e 0, 15, 90, 270, 405, 243;
%e 0, 18, 135, 540, 1215, 1458, 729;
%e 0, 21, 189, 945, 2835, 5103, 5103, 2187;
%p T:= proc(n, k) option remember;
%p if k=n then 3^n
%p elif k=0 then 0
%p else binomial(n,k)*3^k
%p fi; end:
%p seq(seq(T(n, k), k=0..n), n=0..10); # _G. C. Greubel_, Feb 17 2020
%t With[{m = 9}, CoefficientList[CoefficientList[Series[(1-2*x+x^2+3*y*x^2)/(1-2*x-3*y*x+x^2+3*y*x^2), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* _Georg Fischer_, Feb 17 2020 *)
%o (PARI) T(n,k) = if (k==0, 1, binomial(n,k)*3^k);
%o matrix(10, 10, n, k, T(n-1,k-1)) \\ to see the triangle \\ _Michel Marcus_, Feb 17 2020
%o (Sage)
%o @CachedFunction
%o def T(n, k):
%o if (k==n): return 3^n
%o elif (k==0): return 0
%o else: return binomial(n,k)*3^k
%o [[T(n, k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Feb 17 2020
%Y Cf. A000244, A007318, A013610, A193193, A193194.
%K easy,nonn,tabl
%O 0,3
%A _Philippe Deléham_, Apr 07 2012
%E a(48) corrected by _Georg Fischer_, Feb 17 2020