|
|
A182041
|
|
Number of independent sets of nodes in C_5 X C_n (n >= 1).
|
|
1
|
|
|
11, 1, 81, 391, 3561, 25531, 199821, 1511931, 11589281, 88389661, 675443291, 5157630831, 39394699881, 300868345701, 2297915763861, 17550293888221, 134040955378561, 1023739686467981, 7818833928607761, 59716490127924211, 456085875187977011, 3483364700645591901
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
REFERENCES
|
C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8
M. Golin, Y. C. Leung, Y. J. Wang and X. R. Yong, Counting structures in grid-graphs, cylinders and tori using transfer matrices: Survey and new results. In: Demetrescu, C., Sedgewick, R., Tamassia, R., (eds.) The Proceedings of the Second Workshop on Analytic Algorithmics and Combinatorics (ANALCO05), SIAM, Philadelphia, (2005), 250-258.
|
|
LINKS
|
|
|
FORMULA
|
a(n)=4*a(n-1)+27*a(n-2)+10*a(n-3)-30*a(n-4)-7*a(n-5)+8*a(n-6)-a(n-7) with a(0)=11, a(1)=1, a[2]=81, a(3)=391, a(4)=3561, a(5)=25531, a(6)=199821.
G.f.: (-11*x^6+27*x^5+130*x^4-70*x^3-220*x^2-43*x+11)/((x^3-5*x^2-7*x+1)*(x^4-3*x^3-x^2+3*x+1)).
|
|
MATHEMATICA
|
LinearRecurrence[{4, 27, 10, -30, -7, 8, -1}, {11, 1, 81, 391, 3561, 25531, 199821}, 30] (* Harvey P. Dale, Mar 06 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|