login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182043
Table, by rows, of T(k,n) the number of simple graphs on v = prime(n) vertices and with e = prime(k) edges.
0
1, 1, 2, 4, 6, 4, 2, 5, 21, 65, 148, 97, 10, 2, 2, 5, 26, 172, 10250, 75415, 2295898, 8640134, 53037356, 99187806, 70065437, 4609179, 192788, 28259, 467, 2, 2, 5, 26, 176, 14140, 154658, 17422984, 152339952, 6461056816, 359954668522, 899632282299, 4093273437761, 4093273437761
OFFSET
2,3
LINKS
Eric Weisstein's World of Mathematics, Simple Graph.
EXAMPLE
T(3,4) = 4 because there are 4 simple graphs with prime(3) = 5 vertices and prime(4) = 7 edges.
The table begins:
+---+---+---+---+
|e=2|e=3|e=5|e=7|
+---+---+---+---+---+
|v=3| 1 | 1 | | |
+---+---+---+---+---+
|v=5| 2 | 4 | 6 | 4 |
+---+---+---+---+---+
MAPLE
read("transforms3") :
L := BFILETOLIST("b008406.txt") ;
A008406 := proc(n, k)
global L ;
local f, r ;
f := 1 ;
r := 1 ;
while r < n do
f := f+r*(r-1)/2+1 ;
r := r+1 ;
end do:
op(f+k, L) ;
end proc:
for n from 1 do
v := ithprime(n) ;
for k from 1 do
e := ithprime(k) ;
if e > v*(v-1)/2 then
break;
else
printf("%d, ", A008406(v, e)) ;
end if;
end do:
end do: # R. J. Mathar, Oct 20 2013
CROSSREFS
Cf. A008406.
Sequence in context: A317310 A231655 A018841 * A337937 A138125 A098793
KEYWORD
nonn,tabf
AUTHOR
Jonathan Vos Post, Apr 07 2012
EXTENSIONS
Terms from row 4 on by R. J. Mathar, Oct 20 2013
STATUS
approved