login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317310
Expansion of e.g.f. (1 + x)^2*BesselI(0,2*log(1 + x)).
0
1, 2, 4, 6, 4, 0, -2, 14, -100, 792, -6996, 68508, -737882, 8676200, -110627142, 1520662410, -22418697948, 352885526856, -5907074659016, 104782694989616, -1963418893492364, 38753471698684512, -803656781974363412, 17469671114170029708, -397223288562294817330, 9429329994809282773300
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k)*A000984(k).
MAPLE
a:=series((1 + x)^2*BesselI(0, 2*log(1 + x)), x=0, 26): seq(n!*coeff(a, x, n), n=0..25); # Paolo P. Lava, Mar 26 2019
MATHEMATICA
nmax = 25; CoefficientList[Series[(1 + x)^2 BesselI[0, 2 Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] Binomial[2 k, k], {k, 0, n}], {n, 0, 25}]
PROG
(PARI) my(x='x + O('x^30)); Vec(serlaplace((1 + x)^2*besseli(0, 2*log(1 + x)))) \\ Michel Marcus, Mar 27 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jan 22 2019
STATUS
approved