login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{1 <= i < j <= n} (t(i) + t(j)); t = A000217 = triangular numbers.
4

%I #23 Sep 07 2023 05:15:58

%S 1,1,4,252,576576,87178291200,1386980110791475200,

%T 3394352757964564324299571200,

%U 1760578659300452732262852600316664217600,255323290537547288382098619855584488593426606981120000

%N a(n) = Product_{1 <= i < j <= n} (t(i) + t(j)); t = A000217 = triangular numbers.

%C Each term divides its successor, as in A203512.

%C See A093883 for a guide to related sequences.

%F a(n) ~ c * 2^n * exp(n^2*(Pi/4 - 3/2) + n*(Pi/2 + 1)) * n^(n^2 - n - 2 - Pi/8), where c = 0.2807609661547466473998991675307759198889389396430915721129636653... - _Vaclav Kotesovec_, Sep 07 2023

%p t:= n-> n*(n+1)/2:

%p a:= n-> mul(mul(t(i)+t(j), i=1..j-1), j=2..n):

%p seq(a(n), n=0..12); # _Alois P. Heinz_, Jul 23 2017

%t f[j_] := j (j + 1)/2; z = 15;

%t v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]

%t Table[v[n], {n, 1, z}] (* A203511 *)

%t Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203512 *)

%t Table[Product[k*(k+1)/2 + j*(j+1)/2, {k, 1, n}, {j, 1, k-1}], {n, 0, 10}] (* _Vaclav Kotesovec_, Sep 07 2023 *)

%Y Cf. A000217, A203512, A293290, A324403, A324443.

%K nonn

%O 0,3

%A _Clark Kimberling_, Jan 03 2012

%E Name edited by _Alois P. Heinz_, Jul 23 2017

%E a(0)=1 prepended by _Alois P. Heinz_, Jul 29 2017