login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192287 Quasi-antiperfect numbers. 1
11, 12, 21, 111, 979, 19521, 279259, 4841411, 7231219, 10238379, 14645479, 136531171, 592994139, 1869506239, 13820158011, 35242846899, 211443753471, 330984643659, 8806335754299 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A quasi-antiperfect number is a least anti-abundant number, i.e., one such that sigma*(n) = n+1, where sigma*(n) is the sum of the anti-divisors of n. Like quasi perfect numbers (see link) but using anti-divisors.

a(16) > 2*10^10. - Donovan Johnson, Sep 22 2011

LINKS

Table of n, a(n) for n=1..19.

Eric Weisstein's World of Mathematics, Quasiperfect number

EXAMPLE

Anti-divisors of 979 are 2, 3, 19, 22, 103, 178, 653. Their sum is 980 and 980 = 979+1.

MAPLE

P:=proc(n)

local a, i, k;

for i from 3 to n do

a:=0;

for k from 2 to i-1 do

if abs((i mod k)-k/2)<1 then a:=a+k; fi;

od;

if i+1=a then print(i); fi;

od;

end:

P(1000000);

PROG

(PARI) sad(n) = vecsum(select(t->n%t && t<n, concat(concat(divisors(2*n-1), divisors(2*n+1)), 2*divisors(n)))); \\ A066417

isok(n) = sad(n) == n+1; \\ Michel Marcus, Oct 12 2019

CROSSREFS

Cf. A066272, A073930, A192268, A192288.

Sequence in context: A098752 A240763 A231871 * A084855 A101233 A118512

Adjacent sequences: A192284 A192285 A192286 * A192288 A192289 A192290

KEYWORD

nonn,more

AUTHOR

Paolo P. Lava, Aug 02 2011

EXTENSIONS

a(7)-a(15) from Donovan Johnson, Sep 22 2011

a(16)-a(18) by Jud McCranie, Aug 31 2019

a(19) by Jud McCranie, Oct 10 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 26 14:32 EDT 2023. Contains 361549 sequences. (Running on oeis4.)