login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192287
Quasi-antiperfect numbers.
1
11, 12, 21, 111, 979, 19521, 279259, 4841411, 7231219, 10238379, 14645479, 136531171, 592994139, 1869506239, 13820158011, 35242846899, 211443753471, 330984643659, 8806335754299
OFFSET
1,1
COMMENTS
A quasi-antiperfect number is a least anti-abundant number, i.e., one such that sigma*(n) = n+1, where sigma*(n) is the sum of the anti-divisors of n. Like quasi perfect numbers (see link) but using anti-divisors.
a(16) > 2*10^10. - Donovan Johnson, Sep 22 2011
LINKS
Eric Weisstein's World of Mathematics, Quasiperfect number
EXAMPLE
Anti-divisors of 979 are 2, 3, 19, 22, 103, 178, 653. Their sum is 980 and 980 = 979+1.
MAPLE
P:=proc(n)
local a, i, k;
for i from 3 to n do
a:=0;
for k from 2 to i-1 do
if abs((i mod k)-k/2)<1 then a:=a+k; fi;
od;
if i+1=a then print(i); fi;
od;
end:
P(1000000);
PROG
(PARI) sad(n) = vecsum(select(t->n%t && t<n, concat(concat(divisors(2*n-1), divisors(2*n+1)), 2*divisors(n)))); \\ A066417
isok(n) = sad(n) == n+1; \\ Michel Marcus, Oct 12 2019
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Aug 02 2011
EXTENSIONS
a(7)-a(15) from Donovan Johnson, Sep 22 2011
a(16)-a(18) by Jud McCranie, Aug 31 2019
a(19) by Jud McCranie, Oct 10 2019
STATUS
approved