|
|
A192286
|
|
Antiharmonic numbers using anti-divisors: numbers n such that sigma*(n) divides sigma*_2(n), where sigma*(n) is the sum of anti-divisors of n and sigma*_2(n) the sum of squares of anti-divisors of n.
|
|
0
|
|
|
3, 4, 6, 9, 36, 54, 96, 216, 576, 1212, 1296, 1582, 2171, 3129, 3599, 26847, 45914, 69984, 76393, 91013, 137173, 176678, 182559, 183087, 236196, 393216, 497664, 3823898, 28697814, 31850496, 46572031, 47992961, 83951616, 84934656, 95969521, 126310141, 472250381
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..37.
|
|
FORMULA
|
Like A020487 but using anti-divisors.
4, 9, 36, 576, 1296, etc. are antiharmonic both with divisors and anti-divisors.
|
|
EXAMPLE
|
Anti-divisors of 1212 are 5, 8, 24, 25, 97, 485, 808 and their sum is 1452. The sum of the squares of anti-divisors is 898788 and 898788/1452=619.
|
|
MAPLE
|
with(numtheory);
P:=proc(n)
local a, b, i, k;
for i from 3 to n do
a:=0; b:=0;
for k from 2 to i-1 do
if abs((i mod k)- k/2) < 1 then a:=a+k; b:=b+k^2; fi;
od;
if trunc(b/a)=b/a then print(i); fi;
od;
end:
P(200000);
|
|
CROSSREFS
|
Cf. A020487, A066272.
Sequence in context: A350741 A191699 A293272 * A242028 A254002 A095729
Adjacent sequences: A192283 A192284 A192285 * A192287 A192288 A192289
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paolo P. Lava, Jul 28 2011
|
|
EXTENSIONS
|
a(22)-a(37) from Donovan Johnson, Sep 22 2011
|
|
STATUS
|
approved
|
|
|
|