|
|
A192288
|
|
Almost anti-perfect numbers.
|
|
2
|
|
|
3, 4, 9, 19, 24, 131, 139, 339, 5881, 14849, 29501, 57169, 63061, 65789, 542781, 2439241, 3197249, 4111561, 8614481, 48657789, 218234169, 309296261, 731499089, 1191549689, 1569571661, 2471800109, 5687426561, 9505043161, 67784277581, 79468538969, 257067141569, 290324629889, 397393221689, 445568135041, 2260763053809
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
An almost anti-perfect number is a least anti-deficient number, i.e., one such that sigma*(n)=n-1, where sigma*(n) is the sum of the anti-divisors of n. Like almost perfect numbers (see link) but using anti-divisors.
a(29) > 2*10^10. - Donovan Johnson, Sep 22 2011
|
|
LINKS
|
Jud McCranie, Table of n, a(n) for n = 1..36
Eric Weisstein's World of Mathematics, Almost perfect number
|
|
EXAMPLE
|
Anti-divisors of 5881 are 2, 3, 9, 19, 619, 1307, 3921. Their sum is 5880 and 5880=5881-1.
|
|
MAPLE
|
P:=proc(n)
local a, i, k;
for i from 3 to n do
a:=0;
for k from 2 to i-1 do
if abs((i mod k)-k/2)<1 then a:=a+k; fi;
od;
if i-1=a then print(i); fi;
od;
end:
P(1000000);
|
|
CROSSREFS
|
Cf. A066272, A073930, A192267, A192287.
Sequence in context: A304257 A217492 A178784 * A028344 A219680 A078010
Adjacent sequences: A192285 A192286 A192287 * A192289 A192290 A192291
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paolo P. Lava, Aug 02 2011
|
|
EXTENSIONS
|
a(15)-a(28) from Donovan Johnson, Sep 22 2011
a(29)-a(34) from Jud McCranie, Aug 31 2019
a(35) from Jud McCranie, Sep 05 2019
|
|
STATUS
|
approved
|
|
|
|