|
|
A192291
|
|
Couple of numbers a, b for which sigma*(a)=b and sigma(b)-b=a, where sigma*(n) is the sum of the anti-divisors of n.
|
|
3
|
|
|
10, 14, 32, 58, 154, 182, 382, 758, 3830, 5962, 67815454, 94941602, 7172169026, 8196764584, 18624907238, 34790550682, 30033199624, 31387575416, 38857270202, 48571587730
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(21) > 10^11. - Hiroaki Yamanouchi, Sep 28 2015
|
|
LINKS
|
Table of n, a(n) for n=1..20.
|
|
EXAMPLE
|
sigma*(10) = 3+4+7 = 14.
sigma(14)-14 = 1+2+7 = 10.
sigma*(32)= 3+5+7+9+13+21 = 58.
sigma(58)-58 = 1+2+29 = 32.
|
|
MAPLE
|
with(numtheory);
P:= proc(n)
local a, b, c, i, ks;
for i from 3 to n do
a:={};
for k from 2 to i-1 do
if abs((i mod k)- k/2) < 1 then
a:=a union {k};
fi;
od;
b:=nops(a); c:=op(a); s:=0;
for k from 1 to b do
s:=s+c[k];
od;
if sigma(s)-s=i then
print(i, s);
fi;
od;
end:
P(10000);
|
|
CROSSREFS
|
Cf. A063990, A066272, A192290, A192292, A192293.
Sequence in context: A241162 A164765 A116955 * A144967 A328635 A260564
Adjacent sequences: A192288 A192289 A192290 * A192292 A192293 A192294
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Paolo P. Lava, Jun 29 2011
|
|
EXTENSIONS
|
a(11)-a(20) from Hiroaki Yamanouchi, Sep 28 2015
|
|
STATUS
|
approved
|
|
|
|