login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192290
Anti-amicable numbers.
4
14, 16, 92, 114, 5566, 6596, 1077378, 1529394, 3098834, 3978336, 70774930, 92974314
OFFSET
1,1
COMMENTS
Like A063990 but using anti-divisors. sigma*(a)=b and sigma*(b)=a, where sigma*(n) is the sum of the anti-divisors of n. Anti-perfect numbers A073930 are not included in the sequence.
There are also chains of 3 or more anti-sociable numbers.
With 3 numbers the first chain is: 1494, 2056, 1856.
sigma*(1494) = 4+7+12+29+36+49+61+103+332+427+996 = 2056.
sigma*(2056) = 3+9+16+1371+457 = 1856.
sigma*(1856) = 3+47+79+128+1237 = 1494.
With 4 numbers the first chain is: 46, 58, 96, 64.
sigma*(46) = 3+4+7+13+31 = 58.
sigma*(58) = 3+4+5+9+13+23+39 = 96.
sigma*(96) = 64.
sigma*(64) = 3+43 = 46.
No other pairs with the larger term < 2147000000. - Jud McCranie Sep 24 2019
EXAMPLE
sigma*(14) = 3+4+9 = 16; sigma*(16) = 3+11 = 14.
sigma*(92) = 3+5+8+37+61= 114; sigma*(114) = 4+12+76 = 92.
sigma*(5566) = 3+4+9+44+92+484+1012+1237+3711= 6596; sigma*(6596) = 3+8+79+136+776+167+4397 = 5566.
MAPLE
with(numtheory);
A192290 := proc(q)
local a, b, c, k, n;
for n from 1 to q do
a:=0;
for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; fi; od;
b:=a; c:=0;
for k from 2 to b-1 do if abs((b mod k)-k/2)<1 then c:=c+k; fi; od;
if n=c and not a=c then print(n); fi;
od; end:
A192290(1000000000);
PROG
(Python)
from sympy import divisors
def sigma_s(n):
return sum([2*d for d in divisors(n) if n > 2*d and n % (2*d)] +
[d for d in divisors(2*n-1) if n > d >=2 and n % d] +
[d for d in divisors(2*n+1) if n > d >=2 and n % d])
A192290 = [n for n in range(1, 10**4) if sigma_s(n) != n and sigma_s(sigma_s(n)) == n] # Chai Wah Wu, Aug 14 2014
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Paolo P. Lava, Jun 29 2011
EXTENSIONS
a(7)-a(12) from Donovan Johnson, Sep 12 2011
STATUS
approved