login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192285
Primitive pseudo anti-perfect numbers
0
5, 7, 8, 17, 22, 23, 31, 33, 38, 39, 41, 52, 53, 59, 67, 71, 73, 74, 81, 83, 94, 101, 103, 108, 109, 116, 122, 127, 129, 137, 143, 149, 151, 157, 158, 167, 171, 172, 178, 179, 193, 199, 214, 237, 241, 247, 257, 262, 263, 269, 283, 293, 311, 313, 319, 331, 333
OFFSET
1,1
COMMENTS
A primitive pseudo anti-perfect number is a pseudo anti-perfect number that is not a multiple of any other pseudo anti-perfect number.
Like A006036 but using anti-divisors.
Subset of A192270.
MAPLE
with(combinat);
P:=proc(i)
local a, j, k, n, ok, S, v;
v:=array(1..10000); j:=0;
for n from 1 to i do
a:={};
for k from 2 to n-1 do
if abs((n mod k)- k/2) < 1 then a:=a union {k}; fi;
od;
S:=subsets(a);
while not S[finished] do
if convert(S[nextvalue](), `+`)=n then
if j=0 then j:=1; v[1]:=n; print(n); break;
else
ok:=1;
for k from 1 to j do
if trunc(n/v[k])=n/v[k] then ok:=0; break; fi;
od;
j:=j+1; v[j]:=n; if ok=1 then print(n); fi;
fi;
fi;
od;
od;
end:
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jul 20 2011
STATUS
approved