The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192285 Primitive pseudo anti-perfect numbers 0
 5, 7, 8, 17, 22, 23, 31, 33, 38, 39, 41, 52, 53, 59, 67, 71, 73, 74, 81, 83, 94, 101, 103, 108, 109, 116, 122, 127, 129, 137, 143, 149, 151, 157, 158, 167, 171, 172, 178, 179, 193, 199, 214, 237, 241, 247, 257, 262, 263, 269, 283, 293, 311, 313, 319, 331, 333 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A primitive pseudo anti-perfect number is a pseudo anti-perfect number that is not a multiple of any other pseudo anti-perfect number. Like A006036 but using anti-divisors. Subset of A192270. LINKS Table of n, a(n) for n=1..57. MAPLE with(combinat); P:=proc(i) local a, j, k, n, ok, S, v; v:=array(1..10000); j:=0; for n from 1 to i do a:={}; for k from 2 to n-1 do if abs((n mod k)- k/2) < 1 then a:=a union {k}; fi; od; S:=subsets(a); while not S[finished] do if convert(S[nextvalue](), `+`)=n then if j=0 then j:=1; v[1]:=n; print(n); break; else ok:=1; for k from 1 to j do if trunc(n/v[k])=n/v[k] then ok:=0; break; fi; od; j:=j+1; v[j]:=n; if ok=1 then print(n); fi; fi; fi; od; od; end: CROSSREFS Cf. A006036, A066272, A192270 Sequence in context: A140237 A032683 A182005 * A192123 A353601 A104423 Adjacent sequences: A192282 A192283 A192284 * A192286 A192287 A192288 KEYWORD nonn AUTHOR Paolo P. Lava, Jul 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 22:56 EDT 2023. Contains 363102 sequences. (Running on oeis4.)