login
A192283
Sum of prime anti-divisors of n = sum of prime anti-divisors of n+1 with n > 1.
2
237, 4019, 7401, 14178, 14339, 18435, 19146, 21405, 54562, 56348, 60125, 82967, 98447, 99347, 109157, 113391, 125333, 132096, 132386, 145063, 173399, 195213, 260288, 278271, 343848, 384169, 396813, 434375, 460758, 474105, 477707, 528845, 550400, 587211
OFFSET
1,1
COMMENTS
Like A006145 but using anti-divisors.
LINKS
EXAMPLE
Anti-divisors of 7401 are 2, 6, 19, 41, 113, 131, 361, 779, 4934. The primes are 2, 19, 41, 113 and 131 whose sum is 306.
Anti-divisors of 7402 are 3, 4, 5, 7, 9, 15, 21, 35, 45, 47, 63, 105, 113, 131, 141, 235, 315, 329, 423, 705, 987, 1645, 2115, 2961, 4935. The primes are 3, 5, 7, 47, 113 and 131 whose sum is 306.
MAPLE
with(numtheory);
P:=proc(n)
local a, b, i, k;
b:=2;
for i from 4 to n do
a:=0;
for k from 2 to i-1 do
if abs((i mod k)- k/2) < 1 then if isprime(k) then a:=a+k; fi; fi;
od;
if a=b then print(i-1); fi;
b:=a;
od;
end:
P(200000);
CROSSREFS
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jul 27 2011
STATUS
approved