|
|
A163209
|
|
Catalan pseudoprimes: odd composite integers n=2*m+1 satisfying A000108(m) == (-1)^m * 2 (mod n).
|
|
6
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also, Wilson spoilers: composite n which divide A056040(n-1) - (-1)^floor(n/2). For the factorial function, a Wilson spoiler is a composite n that divides (n-1)! + (-1). Lagrange proved that no such n exists. For the swinging factorial (A056040), the situation is different.
Also, composite odd integers n=2*m+1 such that A000984(m) == (-1)^m (mod n).
See the Vardi reference for a binomial setup.
Aebi and Cairns 2008, page 9: a(4) either has more than 2 factors or is > 10^10. - Dana Jacobsen, May 27 2015
|
|
REFERENCES
|
I. Vardi, Computational Recreations in Mathematica, 1991, p. 66.
|
|
LINKS
|
|
|
MAPLE
|
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
WS := proc(f, r, n) select(p->(f(p-1)+r(p)) mod p = 0, [$2..n]);
select(q -> not isprime(q), %) end:
A163209 := n -> WS(swing, p->(-1)^iquo(p+2, 2), n);
|
|
PROG
|
(PARI) v(n, p)=my(s); n*=2; while(n\=p, s+=n%2); s
is(n)=if(n%2==0, return(0)); my(m=Mod(1, n), a=n\2); fordiv(n, d, if(isprime(d) && v(a, d), return(0))); forprime(p=2, a, m*=p^v(a, p)); forprime(p=a+1, n, m*=p); m==(-1)^a
(Perl) # Reasonable for isolated values, slow for the sequence:
use ntheory ":all";
sub is { my $m = ($_[0]-1)>>1; (binomial($m<<1, $m) % $_[0]) == (($m&1) ? $_[0]-1 : 1); }
foroddcomposites { say if is($_) } 2e7; # Dana Jacobsen, May 03 2015
(Perl) # Much faster for sequential testing:
use Math::GMPz; use ntheory ":all"; { my($c, $l)=(Math::GMPz->new(1), 1); sub catalan { while ($_[0] > $l) { $l++; $c *= 4*$l-2; Math::GMPz::Rmpz_divexact_ui($c, $c, $l+1); } $c; } } my $m; foroddcomposites { $m = ($_-1)>>1; say if (catalan($m) % $_) == (($m&1) ? $_-2 : 2); } 2e7; # Dana Jacobsen, May 03 2015
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,hard,more,bref
|
|
AUTHOR
|
|
|
EXTENSIONS
|
a(1) = 5907 = 3*11*179 was found by S. Skiena
|
|
STATUS
|
approved
|
|
|
|