|
|
A015295
|
|
Gaussian binomial coefficient [ n,4 ] for q = -9.
|
|
2
|
|
|
1, 5905, 39226915, 257015284435, 1686534296462470, 11065164158125239526, 72598678627860564552010, 476319830905927777714449130, 3125134483161392104770081009295, 20504007291105533368839949866598015
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
4,2
|
|
REFERENCES
|
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: -x^4 / ( (x-1)*(81*x-1)*(9*x+1)*(729*x+1)*(6561*x-1) ). - R. J. Mathar, Aug 03 2016
|
|
MATHEMATICA
|
|
|
PROG
|
(Sage) [gaussian_binomial(n, 4, -9) for n in range(4, 14)] # Zerinvary Lajos, May 27 2009
(Magma) r:=4; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 02 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|