|
|
A015298
|
|
Gaussian binomial coefficient [ n,4 ] for q = -10.
|
|
2
|
|
|
|
OFFSET
|
4,2
|
|
REFERENCES
|
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: -x^4 / ( (x-1)*(10*x+1)*(1000*x+1)*(100*x-1)*(10000*x-1) ). - R. J. Mathar, Aug 03 2016
|
|
MATHEMATICA
|
|
|
PROG
|
(Sage) [gaussian_binomial(n, 4, -10) for n in range(4, 13)] # Zerinvary Lajos, May 27 2009
(Magma) r:=4; q:=-10; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Aug 03 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|