login
A025513
Exactly half of first a(n) terms of A022300 are 1's (not known to be infinite).
2
5904, 5986, 6050, 6068, 6074, 6076, 6078, 6080, 6084, 6086, 6092, 6094, 6096, 6098, 6100, 6102, 6104, 6106, 6108, 6114, 6116, 6118, 6120, 6124, 6126, 6136, 6138, 6142, 6144, 6146, 6148, 6154, 6156, 6158, 6160, 6162, 6164, 6166, 6168, 6170, 6174, 6176
OFFSET
1,1
COMMENTS
Even numbers n such that A025512(n/2) <= n and A025512(n/2+1) > n. - Robert Israel, Nov 02 2016
LINKS
MAPLE
N:= 10000: # to use A022300(1..N)
B:= Vector(N):
B[1..4]:= <1, 1, 2, 1>:
m:= 4: t:= 2:
for n from 1 while m < N do
t:= 3-t;
B[m]:= t;
if B[n] = 2 and m+1 < N then
B[m+1]:= t; m:= m+2
else m:= m+1
fi
od:
S:= ListTools:-PartialSums(convert(B, list)):
select(t -> S[t] = 3/2*t, [$1..nops(S)]); # Robert Israel, Nov 02 2016
CROSSREFS
Sequence in context: A264216 A061735 A251469 * A015295 A209431 A163209
KEYWORD
nonn
STATUS
approved