login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Catalan pseudoprimes: odd composite integers n=2*m+1 satisfying A000108(m) == (-1)^m * 2 (mod n).
6

%I #35 May 08 2020 17:32:24

%S 5907,1194649,12327121

%N Catalan pseudoprimes: odd composite integers n=2*m+1 satisfying A000108(m) == (-1)^m * 2 (mod n).

%C Also, Wilson spoilers: composite n which divide A056040(n-1) - (-1)^floor(n/2). For the factorial function, a Wilson spoiler is a composite n that divides (n-1)! + (-1). Lagrange proved that no such n exists. For the swinging factorial (A056040), the situation is different.

%C Also, composite odd integers n=2*m+1 such that A000984(m) == (-1)^m (mod n).

%C Contains squares of A001220. In particular, a(2) = A001220(1)^2 = 1093^2 = 1194649 = A001567(274) and a(3) = A001220(2)^2 = 3511^2 = 12327121 = A001567(824).

%C See the Vardi reference for a binomial setup.

%C Aebi and Cairns 2008, page 9: a(4) either has more than 2 factors or is > 10^10. - _Dana Jacobsen_, May 27 2015

%C a(4) > 10^10. - _Dana Jacobsen_, Mar 03 2018

%D I. Vardi, Computational Recreations in Mathematica, 1991, p. 66.

%H C. Aebi, G. Cairns (2008). "<a href="http://gradelle.educanet2.ch/christian.aebi/.ws_gen/9/catalan.pdf">Catalan numbers, primes and twin primes</a>". Elemente der Mathematik 63 (4): 153-164. doi:<a href="http://dx.doi.org/10.4171/EM/103">10.4171/EM/103</a>

%H Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.

%H Peter Luschny, <a href="http://www.luschny.de/math/primes/SwingingPrimes.html"> Swinging Primes.</a>

%H <a href="/index/Ps#pseudoprimes">Index entries for sequences related to pseudoprimes</a>

%p swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:

%p WS := proc(f,r,n) select(p->(f(p-1)+r(p)) mod p = 0,[$2..n]);

%p select(q -> not isprime(q),%) end:

%p A163209 := n -> WS(swing,p->(-1)^iquo(p+2,2),n);

%o (PARI) v(n,p)=my(s); n*=2; while(n\=p, s+=n%2); s

%o is(n)=if(n%2==0,return(0)); my(m=Mod(1,n),a=n\2); fordiv(n,d,if(isprime(d) && v(a,d), return(0))); forprime(p=2,a, m*=p^v(a,p)); forprime(p=a+1,n,m*=p); m==(-1)^a

%o forcomposite(n=4,2e7, if(is(n), print1(n", "))) \\ _Charles R Greathouse IV_, Mar 06 2015

%o (Perl) # Reasonable for isolated values, slow for the sequence:

%o use ntheory ":all";

%o sub is { my $m = ($_[0]-1)>>1; (binomial($m<<1,$m) % $_[0]) == (($m&1) ? $_[0]-1 : 1); }

%o foroddcomposites { say if is($_) } 2e7; # _Dana Jacobsen_, May 03 2015

%o (Perl) # Much faster for sequential testing:

%o use Math::GMPz; use ntheory ":all"; { my($c,$l)=(Math::GMPz->new(1),1); sub catalan { while ($_[0] > $l) { $l++; $c *= 4*$l-2; Math::GMPz::Rmpz_divexact_ui($c,$c,$l+1); } $c; } } my $m; foroddcomposites { $m = ($_-1)>>1; say if (catalan($m) % $_) == (($m&1) ? $_-2 : 2); } 2e7; # _Dana Jacobsen_, May 03 2015

%K nonn,hard,more,bref

%O 1,1

%A _Peter Luschny_, Jul 24 2009

%E a(1) = 5907 = 3*11*179 was found by S. Skiena

%E Typo corrected _Peter Luschny_, Jul 25 2009

%E Edited by _Max Alekseyev_, Jun 22 2012