The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137215 a(n) = 3*(10^n) + (n*n+1)*((10^n)-1)/9. 0
 3, 32, 355, 4110, 48887, 588886, 7111107, 85555550, 1022222215, 12111111102, 142222222211, 1655555555542, 19111111111095, 218888888888870, 2488888888888867, 28111111111111086, 315555555555555527, 3522222222222222190, 39111111111111111075, 432222222222222222182 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Sequence generalized: a(n) = a(0)*(B^n) + F(n)* ((B^n)-1)/(B-1); a(0), B integers, F(n) arithmetic function. Examples: a(0) = 1, B = 10, F(n) = 1 gives A002275, F(n) = 2 gives A090843, F(n) = 3 gives A097166, F(n) = 4 gives A099914, F(n) = 5 gives A099915. a(0) = 1, B = 2, F(n) = 1 gives A000225, F(n) = 2 gives A033484, F(n) = 3 gives A036563, F(n) = 4 gives A048487, F(n) = 5 gives A048488, F(n) = 6 gives A048489. a(0) = 1, B = 3, F(n) = 1 gives A003462, F(n) = 2 gives A048473, F(n) = 3 gives A134931, F(n) = 4 gives A058481, F(n) = 5 gives A116952. a(0) = 1, B = 4, F(n) = 1 gives A002450, F(n) = 2 gives A020989, F(n) = 3 gives A083420, F(n) = 4 gives A083597, F(n) = 5 gives A083584. a(0) = 1, B = 5, F(n) = 1 gives A003463, F(n) = 2 gives A057651, F(n) = 3 gives A117617, F(n) = 4 gives A081655. a(0) = 2, B = 10, F(n) = 1 gives A037559, F(n) = 2 gives A002276. LINKS Index entries for linear recurrences with constant coefficients, signature (33,-393,1991,-3930,3300,-1000). FORMULA a(n) = 3*(10^n) + (n*n+1)*((10^n)-1)/9. O.g.f.: -(-3 + 67*x - 478*x^2 + 1002*x^3 - 850*x^4 + 100*x^5)/((-1+x)^3 * (-1+10*x)^3). - R. J. Mathar, Mar 16 2008 EXAMPLE a(3) = 3*10^3 + (3*3 + 1)*(10^3 - 1)/9 = 4110. PROG (PARI) a(n) = 3*(10^n) + (n*n+1)*((10^n)-1)/9; \\ Jinyuan Wang, Feb 27 2020 CROSSREFS Sequence in context: A037799 A091706 A091705 * A300366 A231591 A123336 Adjacent sequences:  A137212 A137213 A137214 * A137216 A137217 A137218 KEYWORD nonn,easy AUTHOR Ctibor O. Zizka, Mar 06 2008 EXTENSIONS More terms from R. J. Mathar, Mar 16 2008 More terms from Jinyuan Wang, Feb 27 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 02:39 EDT 2020. Contains 333392 sequences. (Running on oeis4.)