The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107254 a(n) = SF(2n-1)/SF(n-1)^2 where SF = A000178. 5
 1, 1, 12, 8640, 870912000, 22122558259200000, 222531556847250309120000000, 1280394777025250130271722799104000000000, 5746332926632566442385615219551212618645504000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Inverse product of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 12 2006 The n X n matrix with A(i,j) = 1/(i+j-1)! (i,j = 1..n) has determinant (-1)^floor(n/2)/a(n). - Mikhail Lavrov, Nov 01 2022 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..20 Mathematics Stack Exchange, Determinant of a matrix involving factorials. Eric Weisstein's World of Mathematics, Hilbert Matrix. FORMULA a(n) = n!*(n+1)!*(n+2)!*...*(2n-1)!/(0!*1!*2!*3!*...*(n-1)!) = A000178(2n-1)/A000178(n-1)^2 = A079478(n)/A000984(n) = A079478(n-1)*A009445(n-1) = A107252(n)*A000142(n) = A088020(n)/A039622(n). a(n) = 1/Product_{j=1..n} ( Product_{i=1..n} 1/(i+j-1) ). - Alexander Adamchuk, Apr 12 2006 a(n) = 2^(n*(n-1)) * A136411(n) for n > 0 . - Robert Coquereaux, Apr 06 2013 a(n) = A136411(n) * A053763(n) for n > 0. [Following remark from Robert Coquereaux] - M. F. Hasler, Apr 06 2013 a(n) ~ A * 2^(2*n^2-1/12) * n^(n^2+1/12) / exp(3*n^2/2+1/12), where A = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 10 2015 a(n) = Product_{k=1..n} rf(k,n) where rf denotes the rising factorial. - Peter Luschny, Nov 29 2015 a(n) = (n! * G(2*n+1))/(G(n+1)*G(n+2)), where G(n) is the Barnes G - function. - G. C. Greubel, Apr 21 2021 EXAMPLE a(3) = 1!*2!*3!*4!*5!/(1!*2!*1!*2!) = 34560/4 = 8640. n = 2: HilbertMatrix[n,n] 1/1 1/2 1/2 1/3 so a(2) = 1 / (1 * 1/2 * 1/2 * 1/3) = 12. The n X n Hilbert matrix begins: 1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 ... 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 ... 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 ... 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 ... 1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12 ... 1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ... MAPLE a:= n-> mul((n+i)!/i!, i=0..n-1): seq(a(n), n=0..10); # Alois P. Heinz, Jul 23 2012 MATHEMATICA Table[Product[(i+j-1), {i, 1, n}, {j, 1, n}], {n, 1, 10}] (* Alexander Adamchuk, Apr 12 2006 *) Table[n!*BarnesG[2n+1]/(BarnesG[n+2]*BarnesG[n+1]), {n, 0, 12}] (* G. C. Greubel, Apr 21 2021 *) PROG (Sage) a = lambda n: prod(rising_factorial(k, n) for k in (1..n)) print([a(n) for n in (0..10)]) # Peter Luschny, Nov 29 2015 (Magma) A107254:= func< n | n eq 0 select 1 else (&*[Factorial(n+j)/Factorial(j): j in [0..n-1]]) >; [A107254(n): n in [0..12]]; // G. C. Greubel, Apr 21 2021 CROSSREFS Cf. A000178, A002457, A005249, A098118. Sequence in context: A013481 A013513 A013480 * A345679 A012532 A343699 Adjacent sequences: A107251 A107252 A107253 * A107255 A107256 A107257 KEYWORD nonn AUTHOR Henry Bottomley, May 14 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 07:48 EST 2023. Contains 367531 sequences. (Running on oeis4.)