login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107251
Supercatalan numbers SF(2n)/(SF(n)*SF(n+1)) where SF is the superfactorial function A000178.
1
1, 1, 12, 7200, 508032000, 7742895390720000, 40797452088662556672000000, 108985983996792124183843071590400000000, 203800994173724454677862841368011757060096000000000000
OFFSET
0,3
FORMULA
a(n) = (n+2)!*(n+3)!*...*(2n)!/(2!*3!*...*n!) = A000178(2n)/(A000178(n)*A000178(n+1)) = A079478(n)/A000142(n+1).
a(n) ~ A * 2^(2*n^2 + 2*n - 7/12) * n^(n^2 - n - 23/12) / (Pi * exp(3*n^2/2 - n + 1/12)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015
EXAMPLE
a(3) = 1!*2!*3!*4!*5!*6!/(1!*2!*3!*1!*2!*3!*4!) = 24883200/(12*288) = 7200.
MAPLE
seq(mul(mul(k+j, j=1..n), k=2..n), n=0..8); # Zerinvary Lajos, Jun 01 2007
CROSSREFS
Cf. A000108 for original Catalan numbers (2n)!/(n!*(n+1)!).
Sequence in context: A167072 A333674 A308130 * A201493 A009173 A012531
KEYWORD
nonn
AUTHOR
Henry Bottomley, May 14 2005
STATUS
approved