login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102680
Number of digits >= 7 in the decimal representations of all integers from 0 to n.
2
0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 34, 35, 36
OFFSET
0,9
COMMENTS
The total number of digits >= 7 occurring in all the numbers 0, 1, 2, ..., n (in decimal representation). - Hieronymus Fischer, Jun 10 2012
LINKS
FORMULA
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 7/10)*(2n + 2 - (2/5 + floor(n/10^j + 7/10))*10^j) - floor(n/10^j)*(2n + 2 - (1+floor(n/10^j)) * 10^j)), where m=floor(log_10(n)).
a(n) = (n+1)*A102679(n) + (1/2)*Sum_{j=1..m+1} (((-2/5)*floor(n/10^j + 7/10) + floor(n/10^j))*10^j - (floor(n/10^j + 7/10)^2 - floor(n/10^j)^2)*10^j), where m=floor(log_10(n)).
a(10^m-1) = 3*m*10^(m-1).
(this is total number of digits >= 7 occurring in all the numbers with <= m places).
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(7*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)
MAPLE
p:=proc(n) local b, ct, j: b:=convert(n, base, 10): ct:=0: for j from 1 to nops(b) do if b[j]>=7 then ct:=ct+1 else ct:=ct fi od: ct: end:
seq(add(p(i), i=0..n), n=0..90);
MATHEMATICA
Accumulate[Table[Count[IntegerDigits[n], _?(#>6&)], {n, 0, 90}]] (* Harvey P. Dale, Sep 04 2018 *)
CROSSREFS
Partial sums of A102679.
Cf. A000120, A000788, A023416, A059015 (for base 2).
Sequence in context: A025794 A354760 A025793 * A025791 A358474 A324608
KEYWORD
nonn,base,easy
AUTHOR
N. J. A. Sloane, Feb 03 2005
EXTENSIONS
More terms from Emeric Deutsch, Feb 23 2005
STATUS
approved