login
A102678
Number of digits >= 6 in the decimal representations of all integers from 0 to n.
2
0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 12, 12, 12, 12, 12, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 17, 18, 19, 20, 20, 20, 20, 20, 20, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 39, 40, 41, 42, 43, 44, 46, 48
OFFSET
0,8
COMMENTS
The total number of digits >= 6 occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012
LINKS
FORMULA
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 2/5)*(2n + 2 - (1/5 + floor(n/10^j + 2/5))*10^j) - floor(n/10^j)*(2n + 2 - (1+floor(n/10^j)) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A102677(n) + (1/2)*Sum_{j=1..m+1} ((-1/5*floor(n/10^j + 2/5) + floor(n/10^j))*10^j - (floor(n/10^j + 2/5)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m-1) = 4*m*10^(m-1).
(this is total number of digits >= 6 occurring in all the numbers with <= m places).
G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(6*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)
MAPLE
p:=proc(n) local b, ct, j: b:=convert(n, base, 10): ct:=0: for j from 1 to nops(b) do if b[j]>=6 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(add(p(i), i=0..n), n=0..86); # Emeric Deutsch, Feb 23 2005
CROSSREFS
Partial sums of A102677.
Cf. A000120, A000788, A023416, A059015 (for base 2).
Sequence in context: A210964 A029135 A196933 * A029132 A195852 A122815
KEYWORD
nonn,base,easy
AUTHOR
N. J. A. Sloane, Feb 03 2005
EXTENSIONS
More terms from Emeric Deutsch, Feb 23 2005
An incorrect g.f. was deleted by N. J. A. Sloane, Sep 16 2009
STATUS
approved