%I #20 Nov 16 2022 17:26:39
%S 0,0,0,0,0,0,1,2,3,4,4,4,4,4,4,4,5,6,7,8,8,8,8,8,8,8,9,10,11,12,12,12,
%T 12,12,12,12,13,14,15,16,16,16,16,16,16,16,17,18,19,20,20,20,20,20,20,
%U 20,21,22,23,24,25,26,27,28,29,30,32,34,36,38,39,40,41,42,43,44,46,48
%N Number of digits >= 6 in the decimal representations of all integers from 0 to n.
%C The total number of digits >= 6 occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - _Hieronymus Fischer_, Jun 10 2012
%H Hieronymus Fischer, <a href="/A102678/b102678.txt">Table of n, a(n) for n = 0..10000</a>
%F From _Hieronymus Fischer_, Jun 10 2012: (Start)
%F a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 2/5)*(2n + 2 - (1/5 + floor(n/10^j + 2/5))*10^j) - floor(n/10^j)*(2n + 2 - (1+floor(n/10^j)) * 10^j)), where m = floor(log_10(n)).
%F a(n) = (n+1)*A102677(n) + (1/2)*Sum_{j=1..m+1} ((-1/5*floor(n/10^j + 2/5) + floor(n/10^j))*10^j - (floor(n/10^j + 2/5)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
%F a(10^m-1) = 4*m*10^(m-1).
%F (this is total number of digits >= 6 occurring in all the numbers with <= m places).
%F G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(6*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)
%p p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=6 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(add(p(i),i=0..n), n=0..86); # _Emeric Deutsch_, Feb 23 2005
%Y Partial sums of A102677.
%Y Cf. A027868, A054899, A055640, A055641, A102669-A102685, A117804, A122840, A122841, A160093, A160094, A196563, A196564. Partial sums of A102669.
%Y Cf. A000120, A000788, A023416, A059015 (for base 2).
%K nonn,base,easy
%O 0,8
%A _N. J. A. Sloane_, Feb 03 2005
%E More terms from _Emeric Deutsch_, Feb 23 2005
%E An incorrect g.f. was deleted by _N. J. A. Sloane_, Sep 16 2009