login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of digits >= 7 in the decimal representations of all integers from 0 to n.
2

%I #23 Nov 17 2022 05:28:58

%S 0,0,0,0,0,0,0,1,2,3,3,3,3,3,3,3,3,4,5,6,6,6,6,6,6,6,6,7,8,9,9,9,9,9,

%T 9,9,9,10,11,12,12,12,12,12,12,12,12,13,14,15,15,15,15,15,15,15,15,16,

%U 17,18,18,18,18,18,18,18,18,19,20,21,22,23,24,25,26,27,28,30,32,34,35,36

%N Number of digits >= 7 in the decimal representations of all integers from 0 to n.

%C The total number of digits >= 7 occurring in all the numbers 0, 1, 2, ..., n (in decimal representation). - _Hieronymus Fischer_, Jun 10 2012

%H Hieronymus Fischer, <a href="/A102680/b102680.txt">Table of n, a(n) for n = 0..10000</a>

%F From _Hieronymus Fischer_, Jun 10 2012: (Start)

%F a(n) = (1/2)*Sum_{j=1..m+1} (floor(n/10^j + 7/10)*(2n + 2 - (2/5 + floor(n/10^j + 7/10))*10^j) - floor(n/10^j)*(2n + 2 - (1+floor(n/10^j)) * 10^j)), where m=floor(log_10(n)).

%F a(n) = (n+1)*A102679(n) + (1/2)*Sum_{j=1..m+1} (((-2/5)*floor(n/10^j + 7/10) + floor(n/10^j))*10^j - (floor(n/10^j + 7/10)^2 - floor(n/10^j)^2)*10^j), where m=floor(log_10(n)).

%F a(10^m-1) = 3*m*10^(m-1).

%F (this is total number of digits >= 7 occurring in all the numbers with <= m places).

%F G.f.: g(x) = (1/(1-x)^2)*Sum_{j>=0} (x^(7*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)

%p p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=7 then ct:=ct+1 else ct:=ct fi od: ct: end:

%p seq(add(p(i),i=0..n), n=0..90);

%p # _Emeric Deutsch_

%t Accumulate[Table[Count[IntegerDigits[n],_?(#>6&)],{n,0,90}]] (* _Harvey P. Dale_, Sep 04 2018 *)

%Y Partial sums of A102679.

%Y Cf. A027868, A054899, A055640, A055641, A102669-A102685, A117804, A122840, A122841, A160093, A160094, A196563, A196564. Partial sums of A102669.

%Y Cf. A000120, A000788, A023416, A059015 (for base 2).

%K nonn,base,easy

%O 0,9

%A _N. J. A. Sloane_, Feb 03 2005

%E More terms from _Emeric Deutsch_, Feb 23 2005