login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A089633
Numbers having no more than one 0 in their binary representation.
36
0, 1, 2, 3, 5, 6, 7, 11, 13, 14, 15, 23, 27, 29, 30, 31, 47, 55, 59, 61, 62, 63, 95, 111, 119, 123, 125, 126, 127, 191, 223, 239, 247, 251, 253, 254, 255, 383, 447, 479, 495, 503, 507, 509, 510, 511, 767, 895, 959, 991, 1007, 1015, 1019, 1021, 1022, 1023
OFFSET
0,3
COMMENTS
Complement of A158582. - Reinhard Zumkeller, Apr 16 2009
Also union of A168604 and A030130. - Douglas Latimer, Jul 19 2012
Numbers of the form 2^t - 2^k - 1, 0 <= k < t.
n is in the sequence if and only if 2*n+1 is in the sequence. - Robert Israel, Dec 14 2018
Also the least binary rank of a strict integer partition of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1). - Gus Wiseman, May 24 2024
LINKS
Vladimir Shevelev, On the Basis Polynomials in the Theory of Permutations with Prescribed Up-Down Structure, arXiv:0801.0072 [math.CO], 2007-201. See Section 14.
Vladimir Shevelev, Binomial Coefficient Predictors, Journal of Integer Sequences, Vol. 14 (2011), Article 11.2.8.
FORMULA
A023416(a(n)) <= 1; A023416(a(n)) = A023532(n-2) for n>1;
A000120(a(u)) <= A000120(a(v)) for u<v; A000120(a(n)) = A003056(n).
a(0)=0, n>0: a(n+1) = Min{m>n: BinOnes(a(n))<=BinOnes(m)} with BinOnes=A000120.
If m = floor((sqrt(8*n+1) - 1) / 2), then a(n) = 2^(m+1) - 2^(m*(m+3)/2 - n) - 1. - Carl R. White, Feb 10 2009
A029931(a(n)) = n and A029931(m) != n for m < a(n). - Reinhard Zumkeller, Feb 28 2014
A265705(a(n),k) = A265705(a(n),a(n)-k), k = 0 .. a(n). - Reinhard Zumkeller, Dec 15 2015
a(A014132(n)-1) = 2*a(n-1)+1 for n >= 1. - Robert Israel, Dec 14 2018
Sum_{n>=1} 1/a(n) = A065442 + A160502 = 3.069285887459... . - Amiram Eldar, Jan 09 2024
A019565(a(n)) = A077011(n). - Gus Wiseman, May 24 2024
EXAMPLE
From Tilman Piesk, May 09 2012: (Start)
This may also be viewed as a triangle: In binary:
0 0
1 2 01 10
3 5 6 011 101 110
7 11 13 14 0111 1011 1101 1110
15 23 27 29 30 01111 10111 11011 11101 11110
31 47 55 59 61 62
63 95 111 119 123 125 126
Left three diagonals are A000225, A055010, A086224. Right diagonal is A000918. Central column is A129868. Numbers in row n (counted from 0) have n binary 1s. (End)
From Gus Wiseman, May 24 2024: (Start)
The terms together with their binary expansions and binary indices begin:
0: 0 ~ {}
1: 1 ~ {1}
2: 10 ~ {2}
3: 11 ~ {1,2}
5: 101 ~ {1,3}
6: 110 ~ {2,3}
7: 111 ~ {1,2,3}
11: 1011 ~ {1,2,4}
13: 1101 ~ {1,3,4}
14: 1110 ~ {2,3,4}
15: 1111 ~ {1,2,3,4}
23: 10111 ~ {1,2,3,5}
27: 11011 ~ {1,2,4,5}
29: 11101 ~ {1,3,4,5}
30: 11110 ~ {2,3,4,5}
31: 11111 ~ {1,2,3,4,5}
47: 101111 ~ {1,2,3,4,6}
55: 110111 ~ {1,2,3,5,6}
59: 111011 ~ {1,2,4,5,6}
61: 111101 ~ {1,3,4,5,6}
62: 111110 ~ {2,3,4,5,6}
(End)
MAPLE
seq(seq(2^a-1-2^b, b=a-1..0, -1), a=1..11); # Robert Israel, Dec 14 2018
MATHEMATICA
fQ[n_] := DigitCount[n, 2, 0] < 2; Select[ Range[0, 2^10], fQ] (* Robert G. Wilson v, Aug 02 2012 *)
PROG
(Haskell)
a089633 n = a089633_list !! (n-1)
a089633_list = [2 ^ t - 2 ^ k - 1 | t <- [1..], k <- [t-1, t-2..0]]
-- Reinhard Zumkeller, Feb 23 2012
(PARI) {insq(n) = local(dd, hf, v); v=binary(n); hf=length(v); dd=sum(i=1, hf, v[i]); if(dd<=hf-2, -1, 1)}
{for(w=0, 1536, if(insq(w)>=0, print1(w, ", ")))}
\\ Douglas Latimer, May 07 2013
(PARI) isoka(n) = #select(x->(x==0), binary(n)) <= 1; \\ Michel Marcus, Dec 14 2018
(Python)
from itertools import count, islice
def A089633_gen(): # generator of terms
return ((1<<t)-(1<<k)-1 for t in count(1) for k in range(t-1, -1, -1))
A089633_list = list(islice(A089633_gen(), 30)) # Chai Wah Wu, Feb 10 2023
(Python)
from math import isqrt, comb
def A089633(n): return (1<<(a:=(isqrt((n<<3)+1)-1>>1)+1))-(1<<comb(a, 2)+a-1-n)-1 # Chai Wah Wu, Dec 19 2024
CROSSREFS
Cf. A181741 (primes), union of A081118 and A000918, apart from initial -1.
For least binary index (instead of rank) we have A001511.
Applying A019565 (Heinz number of binary indices) gives A077011.
For greatest binary index we have A029837 or A070939, opposite A070940.
Row minima of A118462 (binary ranks of strict partitions).
For sum instead of minimum we have A372888, non-strict A372890.
A000009 counts strict partitions, ranks A005117.
A048675 gives binary rank of prime indices, distinct A087207.
A048793 lists binary indices, product A096111, reverse A272020.
A277905 groups all positive integers by binary rank of prime indices.
Sequence in context: A342392 A053328 A333786 * A362815 A358772 A003172
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Jan 01 2004
STATUS
approved