login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086578
a(n) = 7*(10^n - 1).
9
0, 63, 693, 6993, 69993, 699993, 6999993, 69999993, 699999993, 6999999993, 69999999993, 699999999993, 6999999999993, 69999999999993, 699999999999993, 6999999999999993, 69999999999999993, 699999999999999993, 6999999999999999993, 69999999999999999993, 699999999999999999993
OFFSET
0,2
COMMENTS
Original definition: a(n) = k where R(k+7) = 7.
FORMULA
a(n) = 7*9*A002275(n) = 7*A002283(n).
R(a(n)) = A086575(n).
From Chai Wah Wu, Jul 08 2016: (Start)
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
G.f.: 63*x/((1 - x)*(1 - 10*x)). (End)
E.g.f.: 7*(exp(10*x) - exp(x)). - G. C. Greubel, Apr 14 2023
MATHEMATICA
LinearRecurrence[{11, -10}, {0, 63}, 31] (* G. C. Greubel, Apr 14 2023 *)
PROG
(Magma) [7*(10^n -1): n in [0..20]]; // G. C. Greubel, Apr 14 2023
(SageMath) [7*(10^n -1) for n in range(21)] # G. C. Greubel, Apr 14 2023
CROSSREFS
Cf. A002275, A004086 (R(n)).
One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1: A002283, m=2: A086573, m=3: A086574, m=4: A086575, m=5: A086576, m=6: A086577, m=7: A086578, m=8: A086579, m=9: A086580.
Sequences of the form m*10^n - 7: 3*A033175 (m=1, 10), A086943 (m=3), 3*A185127 (m=4), this sequence (m=7), A100412 (m=8).
Sequence in context: A152731 A090028 A152725 * A198399 A221968 A115152
KEYWORD
nonn
AUTHOR
Ray Chandler, Jul 22 2003
EXTENSIONS
Edited by Jinyuan Wang, Aug 04 2021
STATUS
approved