login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 7*(10^n - 1).
9

%I #20 Apr 14 2023 07:55:20

%S 0,63,693,6993,69993,699993,6999993,69999993,699999993,6999999993,

%T 69999999993,699999999993,6999999999993,69999999999993,

%U 699999999999993,6999999999999993,69999999999999993,699999999999999993,6999999999999999993,69999999999999999993,699999999999999999993

%N a(n) = 7*(10^n - 1).

%C Original definition: a(n) = k where R(k+7) = 7.

%H G. C. Greubel, <a href="/A086578/b086578.txt">Table of n, a(n) for n = 0..500</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (11,-10).

%F a(n) = 7*9*A002275(n) = 7*A002283(n).

%F R(a(n)) = A086575(n).

%F From _Chai Wah Wu_, Jul 08 2016: (Start)

%F a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.

%F G.f.: 63*x/((1 - x)*(1 - 10*x)). (End)

%F E.g.f.: 7*(exp(10*x) - exp(x)). - _G. C. Greubel_, Apr 14 2023

%t LinearRecurrence[{11,-10}, {0,63}, 31] (* _G. C. Greubel_, Apr 14 2023 *)

%o (Magma) [7*(10^n -1): n in [0..20]]; // _G. C. Greubel_, Apr 14 2023

%o (SageMath) [7*(10^n -1) for n in range(21)] # _G. C. Greubel_, Apr 14 2023

%Y Cf. A002275, A004086 (R(n)).

%Y One of family of sequences of form a(n) = k, where R(k+m) = m, m=1 to 9; m=1: A002283, m=2: A086573, m=3: A086574, m=4: A086575, m=5: A086576, m=6: A086577, m=7: A086578, m=8: A086579, m=9: A086580.

%Y Sequences of the form m*10^n - 7: 3*A033175 (m=1, 10), A086943 (m=3), 3*A185127 (m=4), this sequence (m=7), A100412 (m=8).

%K nonn

%O 0,2

%A _Ray Chandler_, Jul 22 2003

%E Edited by _Jinyuan Wang_, Aug 04 2021