This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A152725 a(n) = n*(n+1)*(n^4 + 2*n^3 - 2*n^2 - 3*n + 3)/2. 10
 0, 1, 63, 666, 3430, 12195, 34461, 83188, 178956, 352485, 647515, 1124046, 1861938, 2964871, 4564665, 6825960, 9951256, 14186313, 19825911, 27219970, 36780030, 48986091, 64393813, 83642076, 107460900, 136679725, 172236051, 215184438 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS G. C. Greubel, Table of n, a(n) for n = 0..5000 Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1). FORMULA a(n) = n^6 - (n-1)^6 + (n-2)^6 - ... + ((-1)^n)*0^6. G.f.: x*(1 + 56*x + 246*x^2 + 56*x^3 + x^4) / (1-x)^7. - R. J. Mathar, Jul 08 2013 MATHEMATICA k=0; lst={k}; Do[k=n^6-k; AppendTo[lst, k], {n, 1, 5!}]; lst LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 63, 666, 3430, 12195, 34461}, 50] (* G. C. Greubel, Sep 01 2018 *) PROG (PARI) a(n)=n*(n+1)*(n^4+2*n^3-2*n^2-3*n+3)/2 \\ Charles R Greathouse IV, Oct 07 2015 (MAGMA) [n*(n+1)*(n^4+2*n^3-2*n^2-3*n+3)/2: n in [0..50]]; // G. C. Greubel, Sep 01 2018 CROSSREFS Cf. A062392, A062393 (for 5th powers), A011934, A152726 (for 7th powers). Sequence in context: A022522 A152731 A090028 * A086578 A198399 A221968 Adjacent sequences:  A152722 A152723 A152724 * A152726 A152727 A152728 KEYWORD nonn,easy AUTHOR Vladimir Joseph Stephan Orlovsky, Dec 11 2008 EXTENSIONS Offset set to 0 by R. J. Mathar, Aug 15 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 22:02 EDT 2019. Contains 325210 sequences. (Running on oeis4.)