login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070888
Numerator of Sum_{k=1..n} mu(k)/k.
6
1, 1, 1, 1, -1, 2, -1, -1, -1, 19, -1, -1, -2323, -89, 304, 304, 163, 163, -81988, -81988, -15019, 410857, -249979, -249979, -249979, 4165258, 4165258, 4165258, 9246047, -65721449, -4193929329, -4193929329, -6504197377, -302679716, 2562470143
OFFSET
1,6
COMMENTS
Sum_{k>0} mu(k)/k = limit_{n->oo} A070888(n)/A070889(n) = 0. - Jean-François Alcover, Apr 18 2013. This is equivalent to the Prime Number Theorem! - N. J. A. Sloane, Feb 04 2022
REFERENCES
Harold M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0), p. 92.
Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Chelsea Publishing, NY 1953, p. 568.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..2376 (terms 1..1906 from Robert Israel)
F. K. Richter, A new elementary proof of the Prime Number Theorem, arXiv preprint arXiv:2002.03255 [math.NT], 2020-2021.
Harold N. Shapiro, Some assertions equivalent to the prime number theorem for arithmetic progressions, Communications on Pure and Applied Mathematics 2.2‐3 (1949): 293-308.
EXAMPLE
a(6) = 2 because 1-1/2-1/3-1/5+1/6 = 4/30 = 2/15.
MAPLE
T:= 0:
for n from 1 to 100 do
T:= T + numtheory:-mobius(n)/n;
A[n]:= numer(T)
od:
seq(A[n], n=1..100); # Robert Israel, Aug 04 2014
MATHEMATICA
Table[ Numerator[ Sum[ MoebiusMu[k]/k, {k, 1, n}]], {n, 1, 37}]
PROG
(PARI) t = 0; v = []; for( n = 1, 60, t= t + moebius( n) / n; v = concat( v, numerator( t))); v \\ adapted to latest PARI version by Michel Marcus, Aug 04 2014
(Python)
from functools import lru_cache
from sympy import harmonic
@lru_cache(maxsize=None)
def f(n):
if n <= 1:
return 1
c, j = 1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (harmonic(j-1)-harmonic(j2-1))*f(k1)
j, k1 = j2, n//j2
return c+harmonic(j-1)-harmonic(n)
def A070888(n): return f(n).numerator # Chai Wah Wu, Nov 03 2023
CROSSREFS
Cf. A008683, A068337, A070889 (denominators).
Sequence in context: A372326 A029582 A067095 * A180849 A067101 A105816
KEYWORD
frac,sign
AUTHOR
Donald S. McDonald, May 17 2002
EXTENSIONS
Edited by Robert G. Wilson v, Jun 10 2002
STATUS
approved