login
A067095
a(n) = floor(X/Y) where X is the concatenation in increasing order of the first n even numbers and Y is that of the first n odd numbers.
11
2, 1, 1, 1, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181, 181
OFFSET
1,1
COMMENTS
For n > 1, the sequence is increasing and tends to infinity. Proof: for k>=1, when the last concatenated integer at the numerator A019520(n) has k digits, then a(n) > 10^(k-1) (see Krusemeyer reference). - Bernard Schott, Dec 06 2021
Values taken by this function are in A349960. - Bernard Schott, Dec 18 2021
REFERENCES
Mark I. Krusemeyer, George T. Gilbert, and Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 87, pp. 159-161.
FORMULA
a(n) = floor(A019520(n)/A019519(n)).
EXAMPLE
a(4) = floor(2468/1357) = floor(1.81871775976418570375829034635225) = 1.
a(20000) = 18175.
MATHEMATICA
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2k]]; y = StringJoin[y, ToString[2k - 1]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 75} ]
With[{ev=Range[2, 140, 2], od=Range[1, 139, 2]}, Table[Floor[FromDigits[ Flatten[ IntegerDigits/@ Take[ev, n]]]/FromDigits[Flatten[ IntegerDigits/@ Take[od, n]]]], {n, 70}]] (* Harvey P. Dale, Aug 19 2011 *)
PROG
(PARI) ae(n)=my(s=""); for(k=1, n, s=Str(s, 2*k)); eval(s); \\ A019520
ao(n)=my(s=""); for(k=1, n, s=Str(s, 2*k-1)); eval(s); \\ A019521
a(n) = ae(n)\ao(n); \\ Michel Marcus, Dec 07 2021
KEYWORD
easy,nonn,base
AUTHOR
Amarnath Murthy, Jan 07 2002
EXTENSIONS
More terms from Robert G. Wilson v, Jan 09 2002
STATUS
approved