OFFSET
1,1
COMMENTS
For n > 1, the sequence is increasing and tends to infinity. Proof: for k>=1, when the last concatenated integer at the numerator A019520(n) has k digits, then a(n) > 10^(k-1) (see Krusemeyer reference). - Bernard Schott, Dec 06 2021
Values taken by this function are in A349960. - Bernard Schott, Dec 18 2021
REFERENCES
Mark I. Krusemeyer, George T. Gilbert, and Loren C. Larson, A Mathematical Orchard, Problems and Solutions, MAA, 2012, Problem 87, pp. 159-161.
EXAMPLE
a(4) = floor(2468/1357) = floor(1.81871775976418570375829034635225) = 1.
a(20000) = 18175.
MATHEMATICA
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2k]]; y = StringJoin[y, ToString[2k - 1]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 75} ]
With[{ev=Range[2, 140, 2], od=Range[1, 139, 2]}, Table[Floor[FromDigits[ Flatten[ IntegerDigits/@ Take[ev, n]]]/FromDigits[Flatten[ IntegerDigits/@ Take[od, n]]]], {n, 70}]] (* Harvey P. Dale, Aug 19 2011 *)
PROG
(PARI) ae(n)=my(s=""); for(k=1, n, s=Str(s, 2*k)); eval(s); \\ A019520
ao(n)=my(s=""); for(k=1, n, s=Str(s, 2*k-1)); eval(s); \\ A019521
a(n) = ae(n)\ao(n); \\ Michel Marcus, Dec 07 2021
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Amarnath Murthy, Jan 07 2002
EXTENSIONS
More terms from Robert G. Wilson v, Jan 09 2002
STATUS
approved