login
A180849
Continued fraction for x^x, where x is the Glaisher-Kinkelin constant.
0
1, 2, 1, 1, 1, 19, 1, 4, 2, 4, 6, 1, 2, 35, 7, 2, 1, 2, 2, 1, 3, 2, 1, 1, 4, 57, 1, 1, 2, 1, 2, 1, 1, 2, 7, 1, 28, 1, 1, 1, 1, 5, 1, 1, 9, 3, 5, 2, 7, 3, 3, 18, 31, 1, 5, 1, 3, 1, 2, 3, 3, 1, 2, 6, 24, 3, 1, 2, 2, 11, 2, 15, 1, 1, 68, 1, 13, 2, 2, 1, 8, 3, 2, 4, 3, 1, 16, 2, 1, 3, 7, 6, 1, 1, 2, 3, 5, 5, 1
OFFSET
1,2
COMMENTS
The continued fraction expansion of A074962^A074962 = 1.282... ^ 1.282 = 1.375...
EXAMPLE
Glaisher^Glaisher = 1.3757643806188... = 1 + 1/(2 + 1/(1 + 1/(1 + 1/(1 + 1/(19 + ...)))))
MATHEMATICA
ContinuedFraction[Glaisher^Glaisher, 100]
PROG
(PARI) (x->contfrac(x^x))(exp(1/12-zeta'(-1))) \\ Charles R Greathouse IV, Dec 12 2013
CROSSREFS
Cf. A074962.
Sequence in context: A029582 A067095 A070888 * A067101 A105816 A329334
KEYWORD
nonn,less,cofr
AUTHOR
Michel Lagneau, Sep 20 2010
STATUS
approved