login
A105816
Continued fraction expansion of the semiprime nested radical (A105815).
4
2, 1, 1, 1, 34, 1, 2, 2, 2, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 9, 7, 1, 9, 1, 5, 1, 5, 1, 2, 7, 2, 2, 3, 5, 2, 1, 10, 8, 2, 3, 1, 1, 1, 12, 1, 1, 5, 4, 4, 2, 1, 1, 2, 2, 4, 13, 2, 2, 12, 3, 11, 15, 2, 2, 2, 23, 8, 1, 1, 3, 1, 2, 8, 19, 1, 5, 2, 7, 4, 1, 82, 22, 1, 1, 1, 2, 1, 1, 9, 1, 1, 1, 15, 8, 12, 2, 11, 1, 15
OFFSET
0,1
COMMENTS
The semiprime nested radical is defined by the infinite recursion: sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n))))). This converges by the criterion of T. Vijayaraghavan that "the infinite radical, sqrt( a_1 + sqrt( a_2 + sqrt ( a_3 + sqrt( a_4 + ... where a_n => 0, will converge to a limit if and only if the limit of (ln a_n)/2^n exists." [Clawson, 229; Sloane A072449].
Clawson misstates Vijayaraghavan's theorem. Vijayaraghavan proved that for a_n > 0, the infinite radical sqrt(a_1 + sqrt(a_2 + sqrt(a_3 + ...))) converges if and only if limsup (log a_n)/2^n < infinity. (For example, suppose a_n = 1 if n is odd, and a_n = e^2^n if n is even. Then (log a_n)/2^n = 0, 1, 0, 1, 0, 1, ... for n >= 1, so the limit does not exist. However, limsup (log a_n)/2^n = 1 and the infinite radical converges.) - Jonathan Sondow, Mar 25 2014
REFERENCES
Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, Mass., 1996, pages 142 and 229.
S. R. Finch, Analysis of a Radical Expansion, Section 1.2.1 in Mathematical Constants. Cambridge, England: Cambridge University Press, p. 8, 2003.
LINKS
Jonathan M. Borwein and G. de Barra, Nested Radicals, Amer. Math. Monthly 98, 735-739, 1991.
J. Sondow and P. Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl., 332 (2007), 292-314; see pp. 305-306.
Eric Weisstein's World of Mathematics, Nested Radical Constant.
FORMULA
continued fraction representation of: sqrt(4 + sqrt(6 + sqrt(9 + sqrt(10 + sqrt(14 + ... + sqrt(semiprime(n)=A001358(n))))).
EXAMPLE
2.66352563480685654498944673272195514599922982689272932914833705868...
MATHEMATICA
fQ[n_] := Plus @@ Flatten[ Table[ #[[2]], {1}] & /@ FactorInteger[n]] == 2; t = Select[ Range[ 300], fQ[ # ] &]; f[n_] := Block[{k = n, s = 0}, While[k > 0, s = Sqrt[s + t[[k]]]; k-- ]; s]; ContinuedFraction[ f[90], 99] (* Robert G. Wilson v, Apr 21 2005 *)
CROSSREFS
From Robert G. Wilson v: (Start)
Cf. A072449, Decimal expansion of limit of a nested radical, sqrt(1 + sqrt(2 + sqrt(3 + sqrt(4 + ...
Cf. A083869, a(1)=1 then a(n) is the least k>=1 such that the nested radical sqrt(a(1)^2+sqrt(a(2)^2+sqrt(a(3)^2+(....+sqrt(a(n)^2)))...) is an integer.
Cf. A099874, Decimal expansion of a nested radical: cubeRoot(1 + cubeRoot(2 + cubeRoot(3 + cubeRoot(4 + ...
Cf. A099876, Decimal expansion of a nested radical: sqrt(1! + sqrt(2! + sqrt(3! + ...
Cf. A099877, Decimal expansion of a nested radical: sqrt(1^2 + cubeRoot(2^3 + 4thRoot(3^4 + 5thRoot(4^5 + ...
Cf. A099878, Decimal expansion of a nested radical: sqrt(1 + cubeRoot(2 + 4thRoot(3 + 5thRoot(4 + ...
Cf. A099879, Decimal expansion of a nested radical: sqrt(1^2 + sqrt(2^2 + sqrt(3^2 + ...
(End)
Sequence in context: A070888 A180849 A067101 * A329334 A062979 A114781
KEYWORD
cofr,nonn
AUTHOR
Jonathan Vos Post, Apr 21 2005
EXTENSIONS
Offset changed by Andrew Howroyd, Aug 03 2024
STATUS
approved