%I #7 Dec 12 2013 08:34:48
%S 1,2,1,1,1,19,1,4,2,4,6,1,2,35,7,2,1,2,2,1,3,2,1,1,4,57,1,1,2,1,2,1,1,
%T 2,7,1,28,1,1,1,1,5,1,1,9,3,5,2,7,3,3,18,31,1,5,1,3,1,2,3,3,1,2,6,24,
%U 3,1,2,2,11,2,15,1,1,68,1,13,2,2,1,8,3,2,4,3,1,16,2,1,3,7,6,1,1,2,3,5,5,1
%N Continued fraction for x^x, where x is the Glaisher-Kinkelin constant.
%C The continued fraction expansion of A074962^A074962 = 1.282... ^ 1.282 = 1.375...
%e Glaisher^Glaisher = 1.3757643806188... = 1 + 1/(2 + 1/(1 + 1/(1 + 1/(1 + 1/(19 + ...)))))
%t ContinuedFraction[Glaisher^Glaisher,100]
%o (PARI) (x->contfrac(x^x))(exp(1/12-zeta'(-1))) \\ _Charles R Greathouse IV_, Dec 12 2013
%Y Cf. A074962.
%K nonn,less,cofr
%O 1,2
%A _Michel Lagneau_, Sep 20 2010