login
Continued fraction for x^x, where x is the Glaisher-Kinkelin constant.
0

%I #7 Dec 12 2013 08:34:48

%S 1,2,1,1,1,19,1,4,2,4,6,1,2,35,7,2,1,2,2,1,3,2,1,1,4,57,1,1,2,1,2,1,1,

%T 2,7,1,28,1,1,1,1,5,1,1,9,3,5,2,7,3,3,18,31,1,5,1,3,1,2,3,3,1,2,6,24,

%U 3,1,2,2,11,2,15,1,1,68,1,13,2,2,1,8,3,2,4,3,1,16,2,1,3,7,6,1,1,2,3,5,5,1

%N Continued fraction for x^x, where x is the Glaisher-Kinkelin constant.

%C The continued fraction expansion of A074962^A074962 = 1.282... ^ 1.282 = 1.375...

%e Glaisher^Glaisher = 1.3757643806188... = 1 + 1/(2 + 1/(1 + 1/(1 + 1/(1 + 1/(19 + ...)))))

%t ContinuedFraction[Glaisher^Glaisher,100]

%o (PARI) (x->contfrac(x^x))(exp(1/12-zeta'(-1))) \\ _Charles R Greathouse IV_, Dec 12 2013

%Y Cf. A074962.

%K nonn,less,cofr

%O 1,2

%A _Michel Lagneau_, Sep 20 2010