login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029582
E.g.f. sin(x) + cos(x) + tan(x).
3
1, 2, -1, 1, 1, 17, -1, 271, 1, 7937, -1, 353791, 1, 22368257, -1, 1903757311, 1, 209865342977, -1, 29088885112831, 1, 4951498053124097, -1, 1015423886506852351, 1, 246921480190207983617, -1, 70251601603943959887871, 1, 23119184187809597841473537
OFFSET
0,2
FORMULA
G.f.: (1+x)/(1+x^2)+x/T(0) where T(k)= 1 - (k+1)*(k+2)*x^2/T(k+1) ; (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 12 2013
G.f.: (1+x)/(1+x^2)+x/G(0) where G(k) = 1 - 2*x^2*(4*k^2+4*k+1) - 4*x^4*(k+1)^2*(4*k^2+8*k+3)/G(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 12 2013
MATHEMATICA
nn = 30; Range[0, nn]! CoefficientList[Series[Tan[x] + Sin[x] + Cos[x], {x, 0, nn}], x] (* T. D. Noe, Jul 16 2012 *)
PROG
(Sage) # Variant of an algorithm of L. Seidel (1877).
def A029582_list(n) :
dim = 2*n; E = matrix(ZZ, dim); E[0, 0] = 1
for m in (1..dim-1) :
if m % 2 == 0 :
E[m, 0] = 1;
for k in range(m-1, -1, -1) :
E[k, m-k] = E[k+1, m-k-1] - E[k, m-k-1]
else :
E[0, m] = 1;
for k in range(1, m+1, 1) :
E[k, m-k] = E[k-1, m-k+1] + E[k-1, m-k]
return [(-1)^(k//2)*E[k, 0] for k in range(dim)]
A029582_list(15) # Peter Luschny, Jul 14 2012
CROSSREFS
Sequence in context: A358722 A256688 A372326 * A067095 A070888 A180849
KEYWORD
sign
AUTHOR
STATUS
approved