The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A358722 Triangle read by rows. Number T(n, k) of partitions of the multiset [1, 1, 1, 1, 2, 2, 2, 2, ..., n, n, n, n] into k nonempty submultisets, for 1 <= k <= 4n. 4
 1, 1, 2, 1, 1, 1, 12, 29, 32, 21, 10, 3, 1, 1, 62, 513, 1399, 1857, 1513, 855, 364, 119, 31, 6, 1, 1, 312, 8165, 55704, 155989, 231642, 215250, 139789, 68154, 26135, 8105, 2071, 435, 75, 10, 1, 1, 1562, 125121, 2076531, 12235869, 34100001, 53914814, 54898626, 39436580, 21332108, 9098469, 3160761, 914625, 223740, 46628, 8291, 1245, 155, 15, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A generalization of ordinary Stirling set numbers to multisets that contain some m instances each of n elements, here we have m=4. REFERENCES F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973. LINKS Table of n, a(n) for n=0..60. Marko Riedel et al., Number of ways to partition a multiset into k non-empty multisets, Mathematics Stack Exchange. Marko Riedel, Maple code for sequence by plain enumeration, the Polya Enumeration Theorem, and Power Group Enumeration EXAMPLE The triangular array starts: [0]: 1 [1]: 1, 2, 1, 1; [2]: 1, 12, 29, 32, 21, 10, 3, 1; [3]: 1, 62, 513, 1399, 1857, 1513, 855, 364, 119, 31, 6, 1; CROSSREFS Cf. A008277, A358710, A358721, A358781 (row sums). Sequence in context: A079834 A368811 A342458 * A256688 A372326 A029582 Adjacent sequences: A358719 A358720 A358721 * A358723 A358724 A358725 KEYWORD nonn,tabf AUTHOR Marko Riedel, Nov 28 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 01:35 EDT 2024. Contains 374957 sequences. (Running on oeis4.)