The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A358710 Triangle read by rows. Number T(n, k) of partitions of the multiset [1, 1, 2, 2, ..., n, n] into k nonempty submultisets, for 1 <= k <= 2n. 3
 1, 1, 1, 1, 4, 3, 1, 1, 13, 26, 19, 6, 1, 1, 40, 183, 259, 163, 55, 10, 1, 1, 121, 1190, 3115, 3373, 1896, 620, 125, 15, 1, 1, 364, 7443, 34891, 62240, 54774, 27610, 8706, 1795, 245, 21, 1, 1, 1093, 45626, 374059, 1072316, 1435175, 1063570, 485850, 146363, 30261, 4361, 434, 28, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS A generalization of ordinary Stirling set numbers to multisets that contain some m instances each of n elements, here we have m=2. REFERENCES F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973. LINKS Sidney Cadot, Table of n, a(n) for n = 0..420 (terms 1..420 from Marko Riedel) Marko Riedel et al., Number of ways to partition a multiset into k non-empty multisets, Mathematics Stack Exchange. Marko Riedel, Maple code for sequence by plain enumeration, the Polya Enumeration Theorem, and Power Group Enumeration. EXAMPLE The triangular array starts: [0] 1; [1] 1, 1; [2] 1, 4, 3, 1; [3] 1, 13, 26, 19, 6, 1; [4] 1, 40, 183, 259, 163, 55, 10, 1; [5] 1, 121, 1190, 3115, 3373, 1896, 620, 125, 15, 1; [6] 1, 364, 7443, 34891, 62240, 54774, 27610, 8706, 1795, 245, 21, 1; CROSSREFS Cf. A008277, A020555 (row sums), A358721, A358722. Sequence in context: A189967 A139623 A278072 * A216482 A080758 A123683 Adjacent sequences: A358707 A358708 A358709 * A358711 A358712 A358713 KEYWORD nonn,tabf AUTHOR Marko Riedel, Nov 27 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 8 15:58 EDT 2024. Contains 375753 sequences. (Running on oeis4.)