|
|
A358710
|
|
Triangle read by rows. Number T(n, k) of partitions of the multiset [1, 1, 2, 2, ..., n, n] into k nonempty submultisets, for 1 <= k <= 2n.
|
|
3
|
|
|
1, 1, 1, 1, 4, 3, 1, 1, 13, 26, 19, 6, 1, 1, 40, 183, 259, 163, 55, 10, 1, 1, 121, 1190, 3115, 3373, 1896, 620, 125, 15, 1, 1, 364, 7443, 34891, 62240, 54774, 27610, 8706, 1795, 245, 21, 1, 1, 1093, 45626, 374059, 1072316, 1435175, 1063570, 485850, 146363, 30261, 4361, 434, 28, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
A generalization of ordinary Stirling set numbers to multisets that contain some m instances each of n elements, here we have m=2.
|
|
REFERENCES
|
F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
|
|
LINKS
|
|
|
EXAMPLE
|
The triangular array starts:
[0] 1;
[1] 1, 1;
[2] 1, 4, 3, 1;
[3] 1, 13, 26, 19, 6, 1;
[4] 1, 40, 183, 259, 163, 55, 10, 1;
[5] 1, 121, 1190, 3115, 3373, 1896, 620, 125, 15, 1;
[6] 1, 364, 7443, 34891, 62240, 54774, 27610, 8706, 1795, 245, 21, 1;
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|